Chapter 1: Fastest Flyer

Read Editor's Note

T.J. Dean
School of Physics, University of New South Wales at the Australian Defence Force Academy
April 1, 2003


The insects with the highest reliably measured airspeeds are desert locusts (Schistocerca gregaria) and corn earworm moths (Helicoverpa zea). These fly at average airspeeds of 33 and 28 km/h respectively (about 21 and 17 mph). Many insects surely fly faster, but their airspeeds have yet to be studied with modern methods. The highest sustained ground speed recorded is that of the black cutworm (Agrotis ipsilon) which flies at speeds of between 97 and 113 km/h (60-70 mph) (Showers & Sappington 1992). Insect airspeed is affected by mass, size, age, gender, feeding, water content, activity type, temperature, humidity, solar radiation, wind, oxygen level, ascent angle and even habitat isolation.

The speed attainable by insects is currently poorly understood (Gauthreaux et al. 1998); indeed Dudley (1997) states that insect airspeed is one of the least known features of flight performance. This paper details the current state of insect flight speed measurements and includes the most complete table of measured speeds to date.

Methods

Stevenson et al.(1995) attribute the large range of flight speeds measured being due to the different methodologies used (e.g. timing with stopwatches; wind tunnels; flight mills etc.). Insects flying freely often have higher speeds than those that are confined to small cages or tethered (although Wagner (1986) states that cage size has no influence on basic flight performance). While measurements have been made for insects flying up pheromone plumes, they are generally slower than freely flying insects (Kuenen & Carde 1993) and their speed decreases with proximity (Willis et al. 1991) and strength of the source (e.g. Meats & Osborne 2000; March & McNeil 2000).

Riley et al. (1997) found that insects flying on flight mills partitioned their effort between lift and thrust substantially differently from those in free flight. Cooter & Armes (1997), Gatehouse & Hacket (1980), and Gatehouse & Woodrow (1987)) consider that mills do not adversely affect the behaviour of the cotton bollworm (Helicoverpa armigera). They do emphasize, however, that the results are meaningful only when used to provide comparative estimates of flight performance between experimental treatments. Other methods of monitoring insect activity include cameras (e.g. El-Sayed et al. 2000; Fry et al. 2000; Noldus et al. 2002; Hardie & Powell 2002), Doppler-radar autocorrelation analysis (e.g. Buchan & Satelle 1979; Sohal & Buchan 1981; Buchan & Moreton 1981; Renou et al. 1999; Knoppien et al. 2000), telescopic observation against the moon (e.g. Preuss & Preuss 1971), and roundabouts (e.g. Michel et al. 1977). For a full review of remote-sensing, telemetric and computer-based technologies see Reynolds & Riley (2002).

In addition to effects of the methods employed on the measured speed, speed has been found to vary between laboratory and naturally reared specimens. McKibben et al. (1988) found that naturally reared cotton boll weevils (Anthonomus grandis) specimens had an average speed 1.2 times greater than that of the laboratory reared specimens, although this was not found for six generations of the fruit fly Ceratitis capitata (Economopoulos 1992). Significant variation has also been found within single species; a total of seven authors have made over 400 measurements of the speed of the desert locust (Schistocerca gregaria) and found ground speeds ranging from 3 to 33 km/h (Table 1).

Results

The most famous and oft-quoted insect flight speed is that of the deer botfly, reputed to be able to fly at over 1,287 km/h (Townsend 1926). However, Langmuir (1938) refuted this claim calculating that to attain this speed (equivalent to half a horse power) the fly would have to consume 1.5 its own weight in fuel every second. Further observations by Langmuir (1938) found the maximum speed was more likely to be around 40 km/h. Some of the difficulties with early measurements arose from the difficulty separating airspeed from ground speed. Airspeed is the speed relative to the air whereas ground speed (often the quantity actually measured) is the speed relative to the ground (Figure 1). This difficulty in separating airspeeds from ground speeds makes some early measurements obtained using 'less than conventional' methods (e.g., comparisons with the speed of trains [Twinn et al. 1948]) useless for comparison purposes. This is why the reported speed of 98 km/h for Austrophlebia costalis (Hocking 1953) is not included here.


The highest airspeeds reported in refereed literature obtained using a reliable method are those of the desert locust (Schistocerca gregaria), 15 individuals having an average speed of reached 33 ± 3 km/h (mean ± SE) (Waloff 1972), and the corn earworm moth (Helicoverpa zea), ten individuals reaching an average speed of 28 ± 8 km/h (Quero et al. 2001). In the unrefereed literature, a noteworthy record is that of a male horsefly (Hybomitra hinei) that was estimated to achieve an airspeed of around 145 km/h (89 mph) while chasing an air rifle pellet (Kunzig 2000).

The highest sustained ground speed recorded is that of the black cutworm (Agrotis ipsilon) which flies at speeds of between 97 and 113 km/h at heights of between 300 and 600 m 'riding' on winds ahead of cold fronts (Showers & Sappington 1992) although this species only has an airspeed of between 9 and 13 km/h (Jia & Cao 1992).

Discussion

Insect flight speed has been found to be affected by the following insect characteristics:

  1. mass (e.g. Dudley & Srygley 1994; Dudley 1997)
  2. size (e.g. Larkin 1991; Fischer & Kutsch 2000)
  3. age (e.g. Karlsson 1994; Banjaree 1988)
  4. gender (e.g. Rogowitz & Chappell 2000; Willmott & Ellington 1997; Lingren et al. 1995)
  5. amount of feeding (e.g. David 1978; Fadamiro & Wyatt 1995)
  6. water content (e.g. Danks 2000; Lehmann et al. 2000)
  7. activity type (e.g. David & Hardie 1988; Quero et al. 2001; May 1999)

Also, insect flight speed is affected by the following environmental factors:

  1. temperature (e.g. Gilchrist et al. 1997; Isard et al. 2000; Fitzgerald & Underwood 2000; Elliott et al. 2000)
  2. humidity (e.g. Gunn 1937; Pielou & Gunn 1940; Dorner & Mulla 1962)
  3. solar radiation (e.g. Rudinsky & Vite 1956; Ostrand et al. 2000; Carde & Knowls 2000; Vicens & Bosch 2000; Lloyd 2000; Schneider 1965)
  4. wind (e.g. Aluja et al. 1993; Hardie & Young 1997)
  5. oxygen levels (e.g. Ellington et al. 1990; Joos et al. 1997; Harrison & Lighton 1998; Dekker et al. 2001)
  6. habitat isolation (e.g. Denno et al. 2001)
  7. ascent angle (Kutsch et al. 1999)

Given the wide variety of possible effects on insect flight speed, studies of large numbers of insects from a single species have found that the distribution of speeds approximately follows a normal distribution (e.g. Tuxhorn & McShaffrey 1998; Nachtigall 2001; Dean & Drake 2002). Most insects have airspeeds of less than 21 km/h. All currently available measured insect speeds are listed in Table 1. It should be borne in mind, however, that many of the early measurements were made using inaccurate methods and may reflect only a single speed measurement.

Return to top

References

  • Abbott, C.H., 1951, A quantitative study of the migration of the painted lady butterfly, Vanessa cardui L.: Ecology, 32, 155-171.
  • Aluja, M., Prokopy, R.J., Buonaccorsi, J.P., and Carde, R.T., 1993, Wind tunnel assays of olfactory responses of female Rhagoletis pomonella flies to apple volatiles; effect of wind speed and odour release rate: Entomologia Experimentalis et Applicata, 68, 99-108.
  • Baker, P.S., and Cooter, R.J., 1979, The natural flight of the migratory locust, Locusta migratoria L.: J. Comp. Physiol., 131, 79-87.
  • Baker, P.S., Gewecke, M., and Cooter, R.J., 1981, The natural flight of the migratory locusts, Locusta migratoria L.III. Wing-beat frequency, flight speed and attitude: J. comp. Physiol., 141, 233-237.
  • Baker, T.C., Willis, M.A., and Phelan, P.L., 1984, Optomotor anemotaxis polarizes self-steered zigzagging in flying moths: Physiological Entomology, 9, 365-376.
  • Barata, E.N., and Araujo, 2001, Olfactory, orientation responses of the eucalyptus woodborer, Phoracantha semipunctata, to host plant in a wind tunnel: Physiological Entomology, 26, 26-37.
  • Balciunas, J., and Knoff, K., 1977, Orientation, flight speeds, and tracks of three species of migrating butterflies: The Florida Entomologist, 60, 37-39.
  • Banjeree, S., 1988, Organisation of wing cuticle in Locusta migratoria Linnaeus, Tropidacris cristata Linnaeus and Romalea microptera Beauvais: International Journal of Insect Morphology & Embryology, 17, 313-326.
  • Bentley, C.A., 1914, Notes on experiments to determine the reactions of mosquitoes to artificial light: indian J. med. res. Suppl., 5, 9-11. (Cited in Hocking, 1953).
  • Berrigan, D., and Lighton, J.R.b, Bioenergetic and kinematic consequences of limblessness in larval diptera: J. exp. Biol., 179, 245-259.
  • Betts, C.R., and Wootton, R.J., 1988, Wing shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): a preliminary analysis: J. exp. Biol., 138, 271-288.
  • Beutler, R., 1950, Zeit und raum in leben der sammelbiene: Naturwissenschaften, 37, 102-105.
  • Bodenheimer, F.S., 1931, Ueber die Temperaturabhangigkeit von Isekten: III. Die beziehungen der vorzugstemperatur zur luftfeuchtigkeit der umgebung: Zeitschr. vergl. Physiol., 13, 740-747 (cited in Dorner and Mulla, 1962).
  • Brackenbury, J., 1999, Water skating in the larvae of Dixella aestivalis (Diptera) and Hydrobius fuscipes (coleoptera): J. exp. Biol., 202, 845-853.
  • Brady, J., 1991, Flying mate detection and chasing by tsetse flies (Glossina): Physiological Entomology, 16, 153-161.
  • Briegel, H., Knusel, I., and Timmermann, S.E., 2001, Aedes aegypti: size, reserves, survival and flight performance: Journal of Vector Ecology, 26, 21-31.
  • Buchan, P.B., and Moreton, R.B., 1981, Flying and walking of small insects (Mustica domestica) recorded differentially with a standing-wave radar actograph: Physiological Entomology, 6, 149-155.
  • Buchan, P.B., and Sattelle, D.B., 1979, A radar-doppler autocorrelation analysis of insect activity: Physiological Entomology, 4, 103-109.
  • Byers, J.A., 1996, An encounter rate model of bark beetle populations searching at random for susceptible host trees: Ecological Modeling, 91, 57-66.
  • Byrne, D.N., 1999, Migration and dispersal by the sweet potato whitefly, Bemisia tabaci: Agricultural and Forest Meteorology, 97, 309-316.
  • Callahan, P.S., 1965, A photoelectric-photographic analysis of flight behaviour in the Corn Earworm, Heliothis zea and other moths: Annals of the Entomological Society of America, 58, 159-169.
  • Capaldi, E.A., Smith, A.D., Osborne, J.L., Fahrbach, S.E., Farris, S.M., Reynolds, D. R., Edwards, A.S., Martin, A., Robinson, G.E, Poppy, G.M and Riley, J.R., 2000, Ontogeny of orientation flight in the honeybee revealed by harmonic radar: Nature, 403, 537-540.
  • Carde, R.T., and Knols, G.J., 2000, Effects of light levels and plume structure on the orientation manoeuvres of male gypsy moths flying along pheremone plumes: Physiological Entomology, 25, 141-150.
  • Chaudhari, G.B., Bharpdoa, T.M., Patel, J.J., Patel, K.I., and Patel, J.R., 1999, Effect of weather on activity of cotton bollworms in middle Gujarat: Journal of Agrometeorology, 1, 137-142.
  • Chen, R.C., Wu, J.R., Zhu, S.D., and Zhang, J.X., 1984, Flight capacity of the brown planthopper Nilaparvata lugens Stal.: Acta Entomologica Sinica, 27, 121-127.
  • Chiba, Y., Uki., M., Kawasaki, Y., Matsumoto, A., and Tomioka, K., 1993, Entrainability of circadian activity of the mosquito Culex pipiens pallens to 24-hr temperature cycles, with special reference to involvement of multiple oscillators: J. Biol. Rhythms, 8, 211-220.
  • Cloudsley-Thompson, J.L., 1989, Temperature and the activity of ants and other insects in central Australia: Journal of Arid Environments, 16, 185-192.
  • Coelho, J.R., and Holliday, C.W., 2001, Effects of size and flight performance on intermale mate competition in the cicada killer: Sphecius speciosus Drury (Hymenoptera: Sphecidae): Journal of Insect Behaviour, 14, 345-351.
  • Collett, T.S., and Land. M.F., 1975, Visual control of flight behaviour in the hoverfly, Syritta pipiens L.: J. comp. Physiol., 99, 1-66.
  • Colvin, J., Brady, J., and Dransfield, R.D., 1989, Visually-guided, upwind turning behaviour of free-flying tsetse flies in odour-laden wind: a wind-tunnel study: Physiological Entomology, 14, 31-39.
  • Cooter, R.J., and Armes, N.J., 1993, Tethered flight technique for monitoring the flight performance of Helicoverpa armigera (Lepidoptera: Noctuidae) : Population Ecology, 22, 339-345.
  • Correale, S., and Crocker, R.L., 1976, Ground speed of 3 species of migrating lepidoptera: The Florida Entomologist, 59, 424.
  • Danks, H.V., 2000, Dehydration in dormant insects: Journal of Insect Physiology 46, 837-852.
  • David, C.T., 1978, The relationship between body angle and flight speed in free-flying Drosophila: Physiological entomology, 3, 191-195.
  • David, C.T., 1982, Compensation for height in the control of groundspeed by Drosophila in a new, 'barber's pole' wind tunnel: J. Comp. Physiol., 147, 485-193.
  • David, C.T., and Hardie, J., 1988, The visual responses of free-flying summer and autumn form of the black bean aphid, Aphis fabae, in an automated flight chamber: Physiological Entomology, 13, 277-284.
  • Dean, T.J., and Drake, V.A., 2002, Properties of biotic targets observed with an X-band radar profiler and the potential for bias in winds retrieved from Doppler weather radars: Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference, 698-711.
  • Dekker, T., Takken, W., and Carde, R.T., 2001, Structure of host-odour plumes influences catch of Anopheles gambiae s.s. and Aedes aegypti in a dual-choice olfactometer: Physiological Entomology, 26, 124-134.
  • Demoll, R., 1918, Der Flug der Insekten und der Vogel: Jena. (Cited in Hocking, 1953).
  • Denno, R.F., Hawthorne, D.J., Throne, B.L., and Gratton, C., 2001, Reduced flight capability in British Virgin Island populations of a wing-dimorphic insect: the role of habitat isolation, persistence and structure: Ecological Entomology, 25, 25-26.
  • DeVries, P.J., and Dudley, R., 1990, Morphometrics, airspeed, thermoregulation, and lipid reserves of migrating Urania fulgens (Uraniidae) moths in natural free flight: Physiological Zoology, 63, 235-251.
  • Dorner, R.W., and Mulla, S., 1962, Laboratory study of wind velocity and temperature preference of Hippelates eye gnats: Annals of the Entomological Society of America, 55, 36-39.
  • Duan, J.J., Weber, D.C., Hirs, B., and Corn, S., 1996, Spring behavioural patterns of the apple blossom weevil: Entomolgia Experimentalis et Applicata, 79, 9-17.
  • Dudley. R., 1997, The biomechanics of insect flight; form function, evolution: Princeton University Press.
  • Dudley, R. and Srygley, R.B., 1994, Flight physiology of neotropical butterflies: Allometry of airspeeds during natural free flight: The Journal of Experimental Biology, 191, 125-139.
  • Economopoulis, A.P., 1992, Adaptation of the Mediterranean fruit fly (Diptera: Tephritidae) to artificial rearing: Journal of Economic Entomology, 85, 753-758.
  • El-Sayed, A., Godde, J., and Arn, H., 2000, A computer-controlled video system fro real-time recording of insect flight in three dimensions: Journal of Insect Behaviour, 13, 881-900.
  • Ellington, C.P., 1991, Limitations on animal flight performance: J. exp. Biol., 160, 71-91.
  • Ellington, C.P., Machin, K.E., and Casey, T.M., 1990, Oxygen consumption of bumblebees in forward flight: Nature, 347, 472-473.
  • Elliott, N.C., Kieckhefer, R.W., and Beck, D.A., 2000, Adult Coccinellid activity and predation on Aphids in Spring cereals: Biological control, 17, 218-226.
  • Fadamiro, H.Y., 1996, Flight and landing behaviour of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in relation to wind speed: Journal of Stored Products Research, 32, 233-238.
  • Fadamiro, H.Y., 1996b, Influence of stimulus dose and wind speed on the orientation behaviour of Prostephanus truncatus (Coleoptera: Bostrichidae) to pheromone: Bulletin of Entomological Research, 86, 659-665.
  • Fadamiro, H.Y., 1997, Free flight capacity determination in a sustained flight tunnel: Effects of age and sexual state on the flight duration of Prostephanus truncatus: Physiological Entomology, 22, 29-36.
  • Fadamiro, H.Y., and Wyatt, T.D., 1995, Flight initiation by Prostephanus truncatus in relation to time of day, temperature, relative humidity and starvation: Entomologia Experimentalis et Applicata, 75, 273-277.
  • Fadamiro, H.Y., Wyatt, T.D., and Birch, M.C., 1998, Flying beetles respond to moths predict: optomotor anemotaxis to pheromone plumes at different heights: Journal of Insect Behaviour, 11, 549-557.
  • Fischer, H., and Ebert, E., 1999, Tegula function during free locust flight in relation to motor pattern, flight speed and aerodynamic output: J. Exp. Biol., 202, 711-721.
  • Fischer, H., and Kutsch, W., 1999, Timing of elevator muscle activity during climbing in free locust flight: J. exp. Biol., 202, 3575-3586.
  • Fischer, H., and Kutsch, W., 2000, Relationships between body mass, motor output and flight variables during free flight of juvenile and mature adult locusts, Schistocerca gregaria: J. exp. Biol., 203, 2723-2735.
  • Fitzgerald, T.D., and Underwood, D.L.A., 2000, Winter foraging patterns and voluntary hypothermia in the social caterpillar Eucheira socialis: Ecological Entomology 25, 35-44.
  • Frisch, K. von., 1927, Aus dem Leben der Bienen: Berlin. (Cited in Hocking, 1953).
  • Fry, S.N., Bischel, M., Mueller, P., and Robert, D., 2000, Tracking of flying insects using pan-tilt cameras: Journal of Neuroscience Methods, 101, 59-67.
  • Gatehouse, A.G., and Hackett, D.S., 1980, A technique for studying lfight behaviour of tethered Spodoptera exempta moths: Physiological Entomology, 5, 215-222.
  • Gatehouse, A.G., and Woodrow, K.P., 1987, Simultaneous monitoring of flight and oviposition of individual velvetbean caterpillar moths (by Wales, Barfiels and Leppla, 1985); a critique : Physiological Entomology, 12, 117-121.
  • Gauthreaux, S.A. Jr., Mizrahe, D.S., and Belser, C.G., 1998, Bird migration and bias of WSR-88D wind estimates: Weather and Forecasting, 13, 465-481.
  • Gewecke, ?, Control of flying speed in locusts and its significance for their migrations:.
  • Gilchrist, G.W., Huey, R.B., and Partridge, L., 1997, Thermal sensitivity of Drosophila melanogaster: evolutionary responses of adults and eggs to laboratory natural selection at different temperatures: Physiological Zoology, 70, 403-414.
  • Golding, Y.C., Ennos, A.R., Edmuns, M., 2001, Similarity in flight behaviour between the honeybee Apis mellifera (Hymenoptera: apidae) and its presumed mimic, the dronefly Eristalis tenax (Diptera: Syrphidae): J. exp. Biol., 204, 139-145.
  • Gunn, D.L., 1937, The humidity reactions of the woodlouse Porcellio scaber: J. exp. Biol., 14, 178-186 (cited in Dorner and Mulla, 1962).
  • Haine, E., 1955, Aphid take-off in controlled wind speed: Nature, 175, 474-475.
  • Hall, J.P.W., and Willmott, K.R., 2000, Patterns of feeding and behaviour in adult male riodinid butterflies and their relationship to morphology and ecology: Biological Journal of the Linnean Society, 69, 1-23.
  • Hansson, A., 1945, Lauterzeugun und Lautauffasungsvermogen der Bienen: Opusc. ent. Suppl., 6. (Cited in Hocking, 1953).
  • Hardie, J., and Powell, G., 2002, Video analysis of aphid flight behaviour: Computer and Electronics in Agriculture, 35, 229-242.
  • Hardie, J., and Young, S., 1997, Aphid flight-track analysis in three dimensions using video techniques: Physiological Entomology, 22, 116-122.
  • Hardie, J., Storer, J.R., Cook, F.J., Campbell, C.A., Wadhams, L.J., Lilley, R., and Pearce, L., 1996, Sex pheromone and visual trap interactions in mate location strategies and aggregation by host-alternating aphids in the field: Physiological Entomology, 21, 97-106 (cited in Hardie & Young, 1997).
  • Harrison, J.F., and Lighton, J.R.B., 1998, Oxygen-sensitive flight metabolism in the dragonfly Erythemis simplicicollis: J. exp. Biol., 201, 1739-1744.
  • Hocking, B., 1953, The intrinsic range and speed of flight of insects: Trans. R. ent. Soc. lond., 104, 225-345.
  • Idris, A.B., and Grafius, E., 1998, Diurnal flight activity of Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of the diamondback moth (Lepidoptera: Plutellidae) in the field: Environmental Entomology, 27, 406-414.
  • Isaacs, R., Willis, M.A., and Byrne, D.N., 1999, Modulation of whitefly take-off and flight orientation by wind speed and visual clues: Physiological Entomology, 24, 311-318.
  • Isard, S.A., Nasser, M.A., Spencer, J.L., and Levine, E., 1999, The influence of weather on western corn rootworm flight activity at the borders of a soybean field in east central Illinois: Aerobiologia, 15, 95-104.
  • Isard, S.A., Spencer, J.L., Nasser, M.A., and Levine, E., 2000, Aerial movement of western corn rootworm (Coleoptera: Chrysomelidae): die periodicity of flight activity in soybean fields: Environmental Entomology, 29, 226-234.
  • Jian, F., Jayas, D.S., and White, N.D.G., 2002, Movement of adult rusty grain beetles, Cryptolestes ferrugineus (Coleoptera :Cucujidae), in wheat in response to 5C/m temperature gradients at cool temperatures: Journal of Stored Products Research, 39, 87-101.
  • Johnson, C.G., 1969, Migration and dispersal of insects by flight: Methuen, London.
  • Joos, B., Lighton, J.R.B., Harrison, J.F., Suarez, R.K., and Roberts, S.P., 1997, Effects of ambient oxygen tension on flight performance, metabolism, and water loss of the honeybee: Physiological zoology, 70, 167-174.
  • Karlsson, B., 1994, Feeding habits and change of body composition with age in three nymphalid butterfly species: Oikos, 69, 224-230.
  • Katz, S.L., and Gosline, J.M., 1993, Ontogenetic scaling of jump performance in the African desert locust (Schistocerca gregaria): J. exp. Biol., 177, 81-111.
  • Kennedy, J.S., 1939, The visual responses of flying mosquitoes: proc. zool. Soc. Lond., 109, 221-242. (Cited in Hocking, 1953).
  • Kennedy, J.S., and Thomas, A.A.G, 1974, Behaviour of some low-flying aphids in wind: Ann. appl. Biol., 76, 143-159.
  • Killick-Kendrick, R., Wilkes, T.J., Bailly, M., Bailly, I., and Righton, L.A., 1986, Preliminary field observation on the flight speed of a phlebotomine sandfly: Trans. R. Soc. Trop. Med. Hyg., 80, 138-142.
  • Kirkton, S.D., and Schultz, T.D., 2001, Age-specific behaviour and habitat selection of adult male damselflies, Calopteryx maculata (Odonata: Calopterygidae): Journal of Insect Behaviour, 14, 545-556.
  • Knoppien, P., van der Pers, J.N.C, van Delden, W., 2000, Quantification of locomotion and the effect of food deprivation on locomotor activity in Drosophila: Journal of Insect Behaviour 13, 27-43.
  • Kramer, M.G., and Marden, J.H., 1997, Almost airborne: Nature, 385, 403-404.
  • Kuenen, L.P.S., and Carde, R.T., 1993, Effects of moth size on velocity and steering during upwind flight toward a sex pheromone source by Lymantria dispar (Lepidoptera: Lymantriddae): Journal of Insect Behaviour, 6, 177-193.
  • Kunzig, R., 2000, What's the buzz?: Discover, 21, 27-28.
  • Kutsch, W., and Fuchs, U., 2000, Locust flight initiation: a comparison of normal and artificial release: Physiological entomology, 25, 370-382.
  • Kutsch, W., van der Wall, M., and Fischer, H., 1999, Analysis of free forward flight of Schitocerca gregaria employing telemetric transmission of muscle potentials: Journal of experimental zoology, 284, 119-129,
  • Lane, F.W., 1941, How fast do insect fly?: Country Life, 90, May 3.
  • Langmuir, I, 1938, The speed of the deer fly: Science, 87, 233-234.
  • Larkin, R.P., 1991, Flight speeds observed with radar, a correction: slow "birds" are insects: Behavioural Ecology and Sociobiology, 29, 221-224.
  • Lawson, F.R., Chamberlain, J.C., and York, G.T., 1951, Dissemination of the Beet Leafhopper in California: Tech. Bull. U.S. Dep. Agric., No. 1030. (cited in Johnson, 1969).
  • Lehmann, F.O., 1999, Ambient temperature affects free-flight performance in the fruit fly Drosphila melanogaster: J Comp Physiol B, 169, 165-171.
  • Leigh, T.F., and Smith, R.F., 1959, Flight activity of Colias philodice erytheme Boisduval in response to its physical environment: Hilgardia, 28, 569-624. (cited in Johnson, 1969).
  • Lewis, T., and Taylor, L.R., 1967, Introduction to Experimental Ecology: Academic Press. (Cited in Johnson, 1969).
  • Lingren, P.D., Raulston, J.R., Popham, T.W., Wolf, W.W., Lingren, P.S., and Esquivel, J.F., 1995, Flight behaviour of Corn Earworm (Lepidoptera: Noctuidae) moths under low wind speed conditions: Environmental Entomology, 24, 851-860.
  • Lloyd, J.E., 2000, On research and entomological education IV: quantifying mate search in a perfect insect – seeking true facts and insight (Coleoptera: Lampyridae, Photinus): Florida Entomologist, 83, 211-228.
  • Magnan, A., 1934, La locomotion chez les animaux I. Le vol des insectes: Paris. (Cited in Hocking, 1953).
  • March, D., and McNeil, J.N., 2000, Effects of wind speed and atmospheric pressure on mate searching in the aphid parasitoid Aphidius nigripes (Hymenoptera: Aphididae), 1988, Comparison of flight ability: Journal of Insect Behaviour, 13, 187-199.
  • Marden, J.H., 1987, Maximum lift production during takeoff in flying animals: J. exp. Biol., 130, 235-258.
  • Marden, J.H., 1995a, Evolutionary adaptation of contractile performance in muscle of ectothermic winter-flying moths: J. exp. Biol., 198, 2087-2094.
  • Marden, J.H., 1995b, Large-scale changes in thermal sensitivity of flight performance during adult maturation in a dragonfly: J. exp. Biol., 198, 2095-2102.
  • Marden, J.H., 2000, Variability in the size, composition, and function of insect flight muscles: Annual Review of Physiology, 62, 157-178.
  • Marden, J.H., Kramer, M.G., and Frisch, J., 1996, Age-related variation in body temperature, thermoregulation and activity in a thermally polymorphic dragonfly: J. exp. Biol., 199, 529-535.
  • Marden, J.H., Wolf, M.R., and Weber, K.E., 1997, Aerial performance of Drosophila melangaster from populations selected for upwind flight ability: J. exp. Biol., 200, 2747-2755.
  • Marden, J.H., Fitzhugh, G.H., Wolf, M.R., Arnold, K.D., and Rowan, B., 1999, Alternative splicing, muscle calcium sensitivity, and the modulation of dragonfly flight performance: Proceedings of the National Academy of Sciences, 96, 15304-15309.
  • Marden, J.H., O'Donnell, B.C., Thomas, M.A., and Bye, J.Y., 2000, Surface-skimming stoneflies and mayflies: The taxonomic and mechanical diversity of two-dimensional aerodynamic locomotion: Physiological and Biochemical Zoology, 73, 751-764.
  • Mason, P.G., and Hopper, K.R., 1997, Temperature dependence in locomotion of the parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae) from geographical regions with different climates: Environmental Entomology, 26, 1416-1423.
  • May, M., 1995, Dependence of flight behaviour and heat production on air temperature in the green darner dragonfly Anax junius (Odonata: aeshnidae): The Journal of Experimental Biology, 198, 2385-2392.
  • May, M., 1999, Speed demons: Sciences, 39, 16-18.
  • McKeown, K.C., 1944, Insect wonders of Australia: Angus & Robertson.
  • McKibben, G.H., Grodowitz, M.J., and Villavaso, E.J., 1988, Comparison of flight ability of native and two laboratory reared strains of boll weevils (Coleoptera: Curculionidae) on a flight mill: Environmental Entomology, 17, 852-854.
  • McNeil, A.R., 1996, Smokescreen lifted on insect flight: Nature, 384, 609-610.
  • Meats, A., and Osborne, A., 2000, Dose-related upwind anemotaxis and movement up odour gradients in still air in the presence of methyl eugenol by the wild tobacco fly, Bactrocera cacuminata: Physiological Entomology, 25, 41-47.
  • Mendel, Z., Boneh, O., Shenhar, Y., and Riov, J., 1991, Diurnal flight patterns of Orthotomicus erosus and Pityogenes calcaratus in Israel: Phytoparasitica, 19, 23-31.
  • Michel, R., Colin, Y., Rodriguez, M., and Richard, J.P., 1977, Automatic measurement and recording of insect flight activity: Entomologia Experimentalis et Applicata, 21, 199-206.
  • Nachtigall, W., 1996, Insect flight behaviour in a natural environment. 7. Take-off and flight behaviour of the tiger-beetle species Cicindera hybrida in a hot environment (Coleoptera: Cicindelidae): Entomologia Generalis, 20, 249-262.
  • Nachtigall, W., 1996b, Insect flight behaviour in a natural environment. 6. Locomotory behaviour in a population of the tiger beetle species Cicindela hybrida on a small, hot, sandy area (Coleoptera: Cicindelidae): Entomologia Generalis, 20, 241-248.
  • Nachtigall, W., 2001, Hohe Fluggeschwindigkeiten alpiner Dipteren: Entomologia Generalis ?, ?-?
  • Nielsen, E.T., 1961, On the habits of the migratory butterfly Ascia monuste L.: Biol. Meddr., 23, 1-81. (cited in Johnson, 1969).
  • Nilakhe, S.S., and Buainain, C.M., 1988, Observations on movement of spittlebug adults: Pesquisa Agropecuaria Brasileira, 23, 123-134.
  • Nishigaki, J., and Ohtaki, K., 1991, Flight dimorphism in the yellowish elongate chafer, Heptophylla picea Motshulsky (Coleoptera: Scarabaeidae): Applied Entomology and Zoology, 26, 255-261.
  • Noldus, L.P.J., Spink, A.J., and Tegelenbosch, R.A.J., 2002, Computerised video tracking, movement analysis and behaviour recognition in insects: Computer and Electronics in Agriculture, 35, 201-227.
  • Osborne, J.L., Clark, S.J., Morris, R.J., Williams, I.H., Riley, J.R., Smith, A.D., Reynolds, D.R., and Edwards, A.S., 1999, A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar: Journal of Applied Ecology, 36, 519-533.
  • Ostrand, F., Anderbrant, O., and Jonsson, P., 2000, Behaviour of male pine sawflies, Neodiprion sertifer, released downwind from pheromone sources: Entomologia Experimentalis et Applicata, 95, 119-129.
  • Park, O.W, 1923, Flight studies of the honey bee: Amer. Bee J., 63, 71. (Cited in Hocking, 1953).
  • Parman, D.C., 1926, Migration of the Long-beaked Butterfly, Libythea bachmani Firtland (Lepid.: Libytheidae): Ent. News, 37, 101-106. (cited in Johnson, 1969).
  • Pielou, D.P., and Gunn, D.L., 1940, The humidity behaviour of the mealworm beetle Tenebrio molitor, III. The mechanism of the reaction: J. exp. Biol., 17, 286-294. (cited in Dorner and Mulla, 1962).
  • Preiss, R., and Kramer, E., 1986, Pheromone anemotaxis in simulated free flight, in Payne, T.L., Birch, M.C., and Kennedy, C.E.J., Eds., Mechanisms in insect olfaction: Clarendon Press,69-79
  • Preuss, K.P., and Preuss, N.C., 1971, Telescopic observation of the moon as a means for observing migration of the army cutworm, Chorizagratis auxiliaries (Lepidoptera: Noctuidae): Ecology 52, 999-1007.
  • Quero, C., Fadamiro, H.Y., and Baker, T.C., 2001, Responses of male Schistocerca gregaria to single pulses of sex pheromone and behavioural antagonist: Physiological Entomology, 26, 106-115.
  • Renou, M., Berthier, A., Desbart, L., Van der Pers, J., and Guerrero, A., 1999, Actograph analysis of the effects of an Esterase inhibitor on male moth responses to sex pheromone: Chemical Senses, 24, 423-428.
  • Reynolds, D.R., and Riley, J.R., 2002, Remote-sensing, telemetric and computer-based technologies for investigation insect movement: a survey of existing and potential techniques: Computers and Electronics in Agriculture, 35, 271-307.
  • Riley, J.R., Downham, M.C.A., and Cooter, R.J., 1997, Comparison of the performance of Cicadulina leafhoppers on flight mills with that to be expected in free flight: Entomologia Experimentalis et Aplicata, 83, 317-322.
  • Roberts, D.M., 1994, Arabian sandflies (Diptera: Psychodidae) prefer the hottest nights?: Med. Vet. Entomol., 8, 194-198.
  • Roermund, H.J.W. van, Lenteren, J.C. van, 1995, Foraging behaviour of the whitefly parasitoid Encarsia formosa on tomato leaflets: Entomologia Experimentalis et Applicata, 76, 313-324.
  • Rogowitz, G.L., and Chappell, M.A., 2000, Energy metabolism of eucalyptus-boring beetles at rest and during locomotion: gender makes a difference: J. exp. Biol., 203, 1131-1139.
  • Rudinsky, J.A., and Vite, J.P., 1956, Effects of temperature upon the activity and the behaviour of the Douglas fir beetle: Forest Science, 2, 258-267.
  • Saito, O., 2000, Flight activity of three Spodoptera spp., Spodoptera litura, S. exigua and S. depravata, measured by flight actograph: Physiological Entomology, 25, 112-119.
  • Sappington, T.W., and Showers, W.B., 1991, Implications for migration of age-related variation in flight behaviour of Agrotis ipsilon (Lepidoptera: Noctuidae): Annals of the Entomological Society of America, 84, 560-565.
  • Sappington, T.W., and Showers, W.B., 1992, Reproductive maturity, mating status, and long-duration flight behaviour of Agrotis ipsilon (Lepidoptera: Noctuidae) and the conceptual misuse of the oogenesis-flight syndrome by entomologists: Environmental Entomology, 21,677-688.
  • Sohal, R.S., and Buchan, P.B., 1981, Relationship between fluorescent age pigment, physiological age and physical activity in the housefly, Musca domestica: Mechanisms of Ageing and Development 15, 243-249.
  • Sayer, 1965, The determination of flight performance of insects and birds and the associated wind structure of the atmosphere: Animal behaviour, 13,337-341.
  • Schilstra, C., 1999, Insect flight, eye movements, and vision: PhD thesis, Rijksuniversiteit Groningen.
  • Schilstra, C., and van Hateren, J.H., 1999, Blowfly flight and optic flow: J. exp. Biol., 202,1481-1490.
  • Schmolz, E., Geisenheyner, S., Schricker, B., and Lamprecht, I., 1999, Heat dissipation of flying wax moths (Galleria mellonella) measured by means of direct calorimetery: Journal of Thermal Analysis and Calorimetery, 56, 1185-1190.
  • Schnell-Larsen, R., 1934, Der flug der insekten. Eine neue methode zu dessen erforschung: Norsk ent. Tidsskr., 3, 306-315. (Cited in Hocking, 1953).
  • Schofield, C.J., Lehane, M.J., McEwan, P., Catala, S.S., and Gorla, D.E., 1992, Dispersive flight by Triatoma infestans under natural climatic conditions in Argentina: Med. Vet. Entomol., 6, 51-56.
  • Schneider, 1965, Vergleichende untersuchungen zur steurung der flugeschwindigkeit bei Calliphora vicina Rob. Desvoidy (Diptera): Z. wiss. Zool., 173, 114-173.
  • Showers, W.B., and Sappington, T.W., 1992, Corn pest logs thousands of frequent flyer miles: Agricultural research, 40, 20-24.
  • Snow, W.F., 1980, Field estimate of the flight speed of some West African mosquitoes: Ann. Trop. Med. Parasitol., 74, 239-242.
  • Spencer, J.L., Gewax, L.J., Keller, J.E., and Miller, R.J., 1997, Chemiluminescent tags for tracking insect movement in darkness: application to moth photo-orientation: Great Lakes Entomologist, 30, 33-43.
  • Spork, P., and Preiss, R., 1994, Adjustment of flight speed of gregarious desert locust (Orthoptera: Acrididae) flying side by side: Journal of Insect Behaviour, 7, 217-232.
  • Srygley, R.B., 2001, Compensation for fluctuations in crosswind drift without stationary landmarks in butterflies migrating over seas: Animal Behaviour, 61, 191-203.
  • Srygley, R.B., and Kingsolver, J.G., 1998, Red-wing blackbird reproductive behaviour and the palatability, flight performance, and morphology of temperate period butterfly (Cloias, Pieris and Pontia): Biological Journal of the Linnean Society, 64, 41-55.
  • Srygley, R.B., and Kingsolver, J.G., 2000, Effects of weight loading on flight performance and survival of palatable Neotropical Anartia fatima butterflies: Biological Journal of the Linnean Society, 70, 707-725.
  • Steiner, G, 1953, Zur duftorienterung fleigender insekten: Naturwissenschaften, 40, 514-515.
  • Stevenson, R.D., Corbo, K., Baca, L.B., and Quang, D.LE., 1995, Cage size and flight speed of the tobacco hawkmoth Manduca sexta: The Journal of Experimental Biology, 198, 1665-1672.
  • Stewart, S.D., and Gaynor, M.J., 1994, Effects of age, sex and reproductive status on flight by the tarnished plant bug (Heteroptera: Miridae): Environmental Entomology, 23, 80-84.
  • Storer, J.R., Young, S., and Hardie, J., 1999, Three-dimensional analysis of aphid landing behaviour in the laboratory and field: Physiological Entomology, 24, 271-277.
  • Suverkropp, B.P., 1997, Host-finding behaviour of Trichogramma brassicae in maize: Thesis Wageningen Agricultural University.
  • Townsend, C.H.T., 1926, Around the world in a daylight day: A problem in flight: Scientific Monthly, 22, 309-311.
  • Tuxhorn, C., and McShaffrey, D., 1998, Flight velocities of dragonflies measured using video techniques: Presentation to the Ohio Academy of Science Meeting.
  • Twinn, C.R., Hocking, B., McDuffie, W.C., and Cross, H.F., 1948, A preliminary account of the biting flies at Churchill, Manitoba: Canada. J. res., 26, 334-357. (Cited in Hocking, 1953).
  • Urquhart, F.A., 1960, The Monarch Butterfly: University of Toronto Press. (cited in Johnson, 1969).
  • Vicens, N., and Bosch, J., 2000, Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae): Environmental Entomology, 413-420.
  • Visser, M.E., 1994, The importance of being large: the relationship between size and fitness in females of the parasitoid Aphaereta minuta (Hymenoptera: Braconidae): Journal of Animal Ecology, 63, 963-978.
  • Vogel, S., 1966, Flight in Drosophila: I. Flight performance of tethered flies: J. exp. Biol., 44, 567-578.
  • Vogel, S., 1967, Flight in Drosophila: II. Variation in stroke parameters and wing contours: J. exp. Biol., 46, 383-392.
  • Wagner, H., 1986, flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) I. Organization of the flight motor: Phil. Trans. R. Soc. Lond., B 312, 527-551.
  • Wakeling, J.M. and Ellington, C.P., 1997, Dragonfly flight I: Gliding flight and steady-state aerodynamic forces: J. exp. Biol., 200, 543-556.
  • Waloff, Z., 1972, Observations on the airspeeds of freely flying locusts: Anim. Behav., 20, 367-372.
  • Waloff, Z., and Rainey, R.C., 1951, Field studies on factors affecting the displacement of Desert Locust swarms in eastern Africa: anti-Locust Bull.,9. (cited in Johnson, 1969).
  • Warnes, M.L., 1990, The effect of host odour and carbon dioxide on the flight of tsetse flies (Glossina spp.) in the laboratory: Journal of Insect Physiology, 36, 607-611.
  • Weber, D.C., Ferro, D.N., and Stoffolano, J.G., 1993, Quantifying flight of Colorado potato beetles (Coleoptera: Chrysomelidae) with a microcomputer-based flight mill system: Annals of the Entomological Society of America, 86, 366-371.
  • Weis-Fogh, T., 1952, Fat combustion and metabolic rate of flying locusts (Schistocerca gregaria Forskal): Phil. Trans. R. Soc. Lond. (B), 237, 1-36.
  • Weis-Fogh, T., 1956, Biology and physics of the locust flight II. Flight performance of the desert locust (Schistocerca gregaria); Phil. Trans. R. Soc. Lond., B239, 459-510.
  • Weis-Fogh, T., 1976, Energetics and aerodynamics of flapping flight: a synthesis: Symp. R. Ent. Soc. Lond., 7, 48-72.
  • Wenner, A.M., 1963, The flight speed of honeybees; a quantitative approach: J. Apic. Res., 2, 25-32. (Cited in Johnson, 1969)
  • Williams, C.B., 1930, The migration of butterflies: Edinburgh: Oliver & Boyd. (cited in Stevenson et al., 1995).
  • Willis, M.A., and Arbas, E.A., 1991, Odor-modulated upwind flight of the sphinx moth, Manduca sexta L.: J. Comp. Physiol. A., 169, 427-440.
  • Willis, M.A., Murlis, W.J., and Carde, R.T., 1991, Pheromone upwind flight of male gypsy moths, Lymantria dispar, in a forest: Physiological Entomology, 16, 507-521.
  • Willmott, A.P., and Ellington, C.P., 1997, The mechanics of flight in the hawkmoth Manduca sexta: II. Aerodynamic consequences of kinematic and morphological variation: J. exp. Biol., 200, 2723-2745.
  • Wu, Z., and Laughlin, R., 1994, Test on the speed and duration of tethered flight in dried fruit beetle, Carpolophilus hemipterus (Nitidulidae, Coleoptera): Wuyi Science Journal, 11, 52-58.
  • Yueh, E.Y., 1999, Effects of a protozoan parasite, Ophryocystis elektroscirrha, on the flight endurance of its lepidopteran host, the monarch butterfly.
  • Yurkiewicz, W.J., and Smyth, T., 1966, Effect of temperature on flight speed of the sheep blowfly: J. Insect Physiol., 12, 189-194.
  • Zanen, P.O., and Carde, R.T., 1996, Effects of host-odour plume altitude and changing wind velocity on upwind flight maneuvers of a specialist braconid parasitoid: Physiological Entomology, 21, 329-338.
  • Zanker, J.M., 1988, On the mechanism of speed and altitude control in Drosophila melanogaster: Physiological Entomology, 13, 351-361.
  • Zarnack, W., and Wortmann, W., 1989, On the so-called constant-lift reaction of migratory locusts: J. exp. Biol., 147, 111-124.
  • Zolubas, P., and Skirkevicius, A., 1992, Impact of wind speed on the behaviour of spruce bark beetle, Ips typographus L.: Pheromones, 2/3, 23-30.

Return to top

Table 1

Published insect speeds in ms-1, errors in brackets (1 m/s = 3.6 km/h = ca. 2.2 mph).

No.: number

Range:
 A: average, X: max, N: min, R: range

Type:
 A: air-speed, G: ground-speed.
 This was difficult to determine for some (especially early) studies and readers are advised
 to check the original reference.

Method:
 WT: wind tunnel; FF: free flying; FC: flight chamber; T: tethered; M: Mill.

Coleoptera

Family Genus species Speed No. / Range / Type / Method Source
Bostrichidae Prostephanus truncatus 0.2   / A / A / WT Fadamiro, 1996
Prostephanus truncatus (20 m/s wind) 0.07 (0.01) 15 / A / A / WT Fadamiro, 1996b
Prostephanus truncatus (25 m/s wind) 0.08 (0.01) 15 / A / A / WT Fadamiro, 1996b
Prostephanus truncatus (32 m/s wind) 0.1 (0.01) 9 / A / A / WT Fadamiro, 1996b
Ceramycidae Phoracantha semipunctata (in plume) 0.66 (0.21) 32 / A / A / WT Barata & Araujo, 2001
Phoracantha semipunctata (outside plume) 0.52 (0.14) 40 / A / A / WT Barata & Araujo, 2001
Cicindelidae Cicindera hybrida 0.6   / A / A / FF Nachtigall, 1996
3   / X / A / FF Nachtigall, 1996b
Dytiscidae unknown 1.97   / ? / G / ? Lane, 1941
Lampyridae Photinus collustrans 1.2 123 / A / G / FF Lloyd, 2000
0.14-2.1 123 / A / G / FF Lloyd, 2000
Nitidulidae Carpophilus hemipterus (f) 0.44   / A / A / T Wu & Laughlin, 1994
Carpophilus hemipterus (m) 0.33   / A / A / T Wu & Laughlin, 1994
Scolytidae Dendroctonus pseudotsugae 0.34-0.72   / A / A / T Rudinsky & Vite, 1956
Ips typographus 0.15   / N / G / FF Zolubas & Skirkevicius, 1992
various 2   / X / G / FF Byers, 1996

Return to top

Diptera

Family Genus species Speed No. / Range / Type / Method Source
Calliphoridae Calliphora vicina 1.2   / X / A / FC Schilstra & Hateren, 1999a;b
1   / X / A / FC Schilstra, 1999
1.2   / X / A / FC Schilstra, 1999
Phaenicia sericata 1.45-2.05   / A / A / FC Yurkiewicz & Smyth, 1966
Cecidomyidae Mayetiola destructor 7   / A / G / FC Lewis & Taylor, 1967
Chloropidae Hister merdarius 1.92   / A / G / FC Lewis & Taylor, 1967
Oscinella frit 0.76   / A / G / FC Lewis & Taylor, 1967
Culicidae Aedes aegypti (female) 0.18   / A / A / M Briegel et al., 2001
Aedes aegypti (poor) 0.13   / A / A / M Briegel et al., 2001
Aedes aegypti (fast) 0.28   / A / A / M Briegel et al., 2001
0.33   / X / A / M Briegel et al., 2001
Aedes aegypti 1.5   / A / G / FF Kennedy, 1939
0.08-0.33   / A / A / FF Kennedy, 1939
Aedes flavescens 1.1 3 / A / A / M Hocking, 1953
Aedes nearcticus 1.0 10 / A / A / M Hocking, 1953
Anopheles fuliginosus 0.08-0.33   / A / A / FC Bentley, 1914
Anopheles melas 1.2   / X / G / FF Snow, 1980
Culex tarsalis 2.15   / A / G / FF Bailey et al., 1965
Culex thalassius 1.2   / A / G / FF Snow, 1980
unknown 1.39   / ? / G / ? Lane, 1941
Drosophilidae Drosophila hydei (fed) 0.3 (0.085)   / A / G / WT David, 1978
Drosophila hydei (starved) 0.46 (0.11)   / A / G / WT David, 1978
0.5   / A / A Lehmann, 2001
Drosophila virilis 2   / A / A / WT Vogel, 1967
2   / A / A / T Vogel, 1966
Drosophila melangaster 1.37   / A / G / FC Lewis & Taylor, 1967
0.70 (0.01) 113 / A / A / WT Marden et al., 1997
0.64 (0.02) 88 / A / A / WT Marden et al., 1997
0.46 (0.02) 99 / A / A / WT Marden et al., 1999
0.52 (0.01) 144 / A / A / WT Marden et al., 2000
Drosophila 1.4 26 / A / A / M Hocking, 1953
Empididae Rhamphomyia 3.05   / A / G / FC Lewis & Taylor, 1967
Equidae Hippelates collusor 0.9   / A / A / WT Dorner & Mulla, 1962
Fanniidae Fannia canicularis 0.4-0.8   / A / A / FC Nachtigall, 1999
0.5-0.65   / A / A / FC Nachtigall, 1999b
Glossinidae Glossina morsitans morsitans 1.8   / A / G / WT Colvin et al., 1989
4.8 (0.1)   / A / G / FF Brady, 1991
Muscidae Musca domestica 2.23   / ? / G / ? Lane, 1941
3.05   / A / G / FC Lewis & Taylor, 1967
1.8   / A / G / FF McKeown, 1944
Stomoxys calcitrans 0.33   / A / A / FF Bailey et al., 1973
0.55   / A / A / FF Eddy et al., 1962
Musca sp. 0.28 (0.032) 8 / A / G / FF Golding et al., 2001
Oestridae Tracheomyia macropi 11.17   / X / G / ? Lane, 1941
Psychodidae Phlebotomus ariasi 0.65-0.70   / X / A / WT Killick-Kendrick et al., 1986
Schizophora Calliphoridae 2.68   / ? / G / ? Lane, 1941
Simuliidae Simulium venustum 1.5 16 / A / A / M Hocking, 1953
2.4 3 / A / A / M Hocking, 1953
Syrphidae Eristalis tenax 0.19 (0.03) 8 / A / G / FF Golding et al., 2001
Syritta pipiens 1.4-4.6   / A / A / FC Collet & Land, 1975
Syrphus ribesii 0.19 (0.01) 9 / A / G / FF Golding et al., 2001
Tabanidae Hybomitra hinei 40.3   / X / G / FF Kunzig, 2000
Tabanids (unspecified) 18   / N / G / FF Schwardt, 1932
Tabanus affinis 2.3 71 / A / A / T&M Hocking, 1953
6.5   / A / G / FC Lewis & Taylor, 1967
12.5   / X / G / FF Twinn et al., 1948
Tabanus bovinus 14   / X / A / FF Demoll, 1918
4   / A / A / T Magnan, 1934
Tabanus septentrionalis 2.4 10 / A / A / M Hocking, 1953
6.5   / A / G / FC Lewis & Taylor, 1967
various 13.4   / ? / G / ? Lane, 1941
various 12.5   / A / G / FF McKeown, 1944

Return to top

Ephemeroptera

Family Genus species Speed No. / Range / Type / Method Source
unknown unknown 0.5   / ? / G / ? Lane, 1941

Return to top

Hemiptera

Family Genus species Speed No. / Range / Type / Method Source
Aphididae Aphis fabae 0.76   / A / G / FC Lewis & Taylor, 1967
0.13-0.28   / A / A / WT Kennedy & Thomas, 1974
various 0.54-0.67   / A / A / WT Haine, 1955
various 3.15 (0.19)   / A / A / WT Hardie & Young, 1997
various 2.76 (0.19)   / A / A / WT Hardie & Young, 1997
Cicadellidae Circulifer tenellus 0.27-0.85   / A / A / WT Lawson et al., 1951
Miridae Lygus lineolaris 0.45   / A / A / M Stewart & Gaylor, 1994
various various 3   / A / G / FF Nilakhe & Buainain, 1988

Return to top

Homoptera

Family Genus species Speed No. / Range / Type / Method Source
Aleyrodidae Aleyrodes 0.46   / A / G / FC Lewis & Taylor, 1967
Bemisia tabaci 0.04-0.16   / A /   / FC Byrne, 1999
0.16-0.23 30 / A / G / WT Isaacs et al., 1999
0.16-0.49 30 / A / A / WT Isaacs et al., 1999
Aphididae Drepanosiphum platanoidis 0.91   / A / G / FC Lewis & Taylor, 1967
Jacksonia papillata 0.37   / A / G / FC Lewis & Taylor, 1967
Macrosiphum pisum 0.55   / A / G / FC Lewis & Taylor, 1967
Cicadellidae Typhlocyba 1.16   / A / G / FC Lewis & Taylor, 1967
Delphacidae Nilaparvata lugens 22.4   / X / A / M Chen et al., 1984

Return to top

Hymenoptera

Family Genus species Speed No. / Range / Type / Method Source
Apiidae unknown 3-15.7 100 / A / G / FF Osborne et al., 1999
unknown 4.9   / ? / G / ? Lane, 1941
Apis mellifera 2.6 16 / A / A / M Hocking, 1953
4.14   / A / G / FC Lewis & Taylor, 1967
3.3-5.1   / A / A / T Nachtigall et al., 1995
0.19 (0.025) 11 / A / G / FF Golding et al., 2001
2.2-3.6   / A / G / FF McKeown, 1944
Apis mellifera (drone) 1.8   / A / G / FF Park, 1923
1.8   / A / A / FF Schnell-larsen, 1934
Apis mellifera (Worker - empty) 8.3   / A / A / T Hansson, 1945
4.9   / ? / G / ? Lane, 1941
5.6   / A / G / HR Capaldi et al., 2000
3.6   / A / G / HR Capaldi et al., 2000
Apis mellifera (Worker - full) 7.2   / A / A / T Hansson, 1945
2.4   / ? / G / ? Lane, 1941
Apis mellifera (Worker) 5.56   / A / G / FF Beutler, 1950
3.75   / A / G / FF Demoll, 1918
2.5   / A / A / T Magnan, 1934
6.12   / A / G / FF Park, 1923
6   / A / A / T von Frisch, 1927
14   / A / G / FF Wenner, 1963
Ichneumonidae Ichneumon 1.67   / A / G / FC Lewis & Taylor, 1967
Vespidae Vespa crabro 5.9   / ? / G / ? Lane, 1941
unknown unknown 5.4   / ? / G / ? Lane, 1941

Return to top

Lepidoptera

Family Genus species Speed No. / Range / Type / Method Source
Hesperiidae Chioides catillus 3.6 (0.2) 2 / A / A / FF Srygley, 2001
Dryas julia 3.1 (0.6) 6 / A / A / FF Srygley, 2001
unknown 5.1 1 / A / A / FF Srygley, 2001
Urbanus simplicius 3.5 1 / A / A / FF Srygley, 2001
unknown 5.3 1 / A / A / FF Srygley, 2001
Calpodes ethlius 7.5 2 / A / A / FF Dudley & Srygley, 1994
Cyclosemia anastomosis 5.7 1 / A / A / FF Dudley & Srygley, 1994
Heliopetes sp. 4.1 2 / A / A / FF Dudley & Srygley, 1994
Typhedanus undulatus 7.4 1 / A / A / FF Dudley & Srygley, 1994
Urbanus proteus 4.5 98 / A / G / FF Balciunas & Knopf, 1977
6.1 98 / A / A / FF Balciunas & Knopf, 1977
Libytheidae Libythia bachmani 4.47-6.7   / A / G / FF Parman, 1926
Lycaenidae Lycaena phlaeas 2.86   / A / G / FC Lewis & Taylor, 1967
Lymantriidae Lymantria dispar 4.5 24 / A / G / WT Kuenen & Carde, 1993
4.7 24 / A / G / WT Kuenen & Carde, 1993
5.3 24 / A / G / WT Kuenen & Carde, 1993
0.64 (0.18) 20 / A / A / WT Carde & Knols, 2000
0.53 (0.06) 20 / A / A / WT Carde & Knols, 2000
0.48 (0.06) 20 / A / A / WT Carde & Knols, 2000
Noctuidae Agrochola lychnidis 4.35   / A / G / FC Lewis & Taylor, 1967
Agrotis ipsilon 26.8-31.3   / A / G / T Showers & Sappington, 1992
Schistocerca gregaria 3.5 47 / A / G / FF Lingren et al., 1995
7.9 (2.3) 10 / A / A / WT Quero et al., 2001
Schistocerca gregaria (casting) 5.7 (2.4) 10 / A / A / WT Quero et al., 2001
Noctuidae & Sphingidae unknown 4.47-6.7   / A / A / FC Callahan, 1965
Nymphalidae Adelpha iphiclus 3.6 1 / A / A / FF Dudley & Srygley, 1994
Agranlis vanillae 3.6 1 / A / A / FF Srygley, 2001
2.8 2 / A / G / FF Correale & Crocker, 1976
5 1 / A / A / FF Dudley & Srygley, 1994
Anartia fatima 3.6 7 / A / A / FF Dudley & Srygley, 1994
Anartia fatima (females) 2.6 (0.2) 5 / A / A / FF Srygley & Kingsolver, 2000
Anartia fatima (males) 2.5 (0.4) 27 / A / A / FF Srygley & Kingsolver, 2000
Archaeoprepona demophon 7 1 / A / A / FF Dudley & Srygley, 1994
Cissia sp. 2.2 1 / A / A / FF Dudley & Srygley, 1994
Danaus eresimus 3.9 2 / A / A / FF Dudley & Srygley, 1994
3 2 / A / A / FF Srygley, 2001
Danaus gilippus 3.6 4 / A / A / FF Dudley & Srygley, 1994
Danaus plexippus 4.9   / A / G / FF Urquhart, 1960
8.9-11.2   / A / G / FF Urquhart, 1960
Danaus plexippus (parasite infected) 0.9622 20 / A / A / M Yueh, 1999
0.9345 20 / A / A / M Yueh, 1999
Dione juno 3.8 3 / A / A / FF Dudley & Srygley, 1994
Dryadula phaetusa 3.7 8 / A / A / FF Dudley & Srygley, 1994
Dryas iulia 4.5 5 / A / A / FF Dudley & Srygley, 1994
Eueides lybia 2.3 1 / A / A / FF Dudley & Srygley, 1994
Eunica alcmena 3 1 / A / A / FF Dudley & Srygley, 1994
Eunica sp. 4.8 1 / A / A / FF Dudley & Srygley, 1994
Hamadryas feronia 4.4 3 / A / A / FF Dudley & Srygley, 1994
Hamadryas ipthime 4.5 1 / A / A / FF Dudley & Srygley, 1994
Heliconius charitonius 2.3 1 / A / A / FF Dudley & Srygley, 1994
Heliconius eleuchia 1.9 1 / A / A / FF Dudley & Srygley, 1994
3.3 1 / A / A / FF Dudley & Srygley, 1994
Heliconius erato 1.7 3 / A / A / FF Dudley & Srygley, 1994
Heliconius hecale 2.1 7 / A / A / FF Dudley & Srygley, 1994
Heliconius melpomene 2.6 1 / A / A / FF Dudley & Srygley, 1994
Heliconius sapho 2 1 / A / A / FF Dudley & Srygley, 1994
Heliconius sara 2.7 7 / A / A / FF Dudley & Srygley, 1994
Historis acheronta 6.5 11 / A / A / FF Dudley & Srygley, 1994
4.3 1 / A / A / FF Srygley, 2001
Junonia evarete 2.3 2 / A / A / FF Dudley & Srygley, 1994
3.8 1 / A / A / FF Srygley, 2001
Laparus doris 2.7 1 / A / A / FF Dudley & Srygley, 1994
Marpesia chiron 4.6 23 / A / A / FF Dudley & Srygley, 1994
Marpesia petreus 4.9 13 / A / A / FF Dudley & Srygley, 1994
Mechanitis lysimnia 0.7 1 / A / A / FF Dudley & Srygley, 1994
Mechanitis polymnia 2.5 1 / A / A / FF Dudley & Srygley, 1994
Melinaea parallelis 2.5 2 / A / A / FF Dudley & Srygley, 1994
Melinaea scylax 3.5 1 / A / A / FF Dudley & Srygley, 1994
Morpho amathonte 2.6 1 / A / A / FF Dudley & Srygley, 1994
Olyras insignis 2.5 1 / A / A / FF Dudley & Srygley, 1994
Philaethria dido 2.5 5 / A / A / FF Dudley & Srygley, 1994
Precis coenia 2.8 10 / A / G / FF Balciunas & Knopf, 1977
5.3 10 / A / A / FF Balciunas & Knopf, 1977
Precis lavinae 2.7 7 / A / G / FF Correale & Crocker, 1976
Pyrrhogyra crameir 2.2 1 / A / A / FF Dudley & Srygley, 1994
Pyrrhogyra neaerea 1.8 1 / A / A / FF Dudley & Srygley, 1994
Pyrrhogyra otolais 3.6 1 / A / A / FF Dudley & Srygley, 1994
Siproeta stelenes 3.7 2 / A / A / FF Dudley & Srygley, 1994
Vanessa atalanta 3.9   / ? / G / ? Lane, 1941
Vanessa cardui 2.2-6.1   / A / G / FF Abbott, 1951
4.9-8   / A / G / FF Williams, 1930
Papilionidae Battus polydamas 5.8 3 / A / A / FF Dudley & Srygley, 1994
Eurytides dolicaon 4.5 1 / A / A / FF Dudley & Srygley, 1994
Eurytides ilus 4.5 3 / A / A / FF Dudley & Srygley, 1994
Eurytides protesilaus 5.3 3 / A / A / FF Dudley & Srygley, 1994
Papilio anchisiades 4.6 2 / A / A / FF Dudley & Srygley, 1994
Papilio thoas 4.6 6 / A / A / FF Dudley & Srygley, 1994
Parides arcas 2.9 3 / A / A / FF Dudley & Srygley, 1994
Parides sesostris 3.1 2 / A / A / FF Dudley & Srygley, 1994
Pieridae Anteos maerula 5.4 4 / A / A / FF Srygley, 2001
Aphrissa boisduvallii 5.1 29 / A / A / FF Dudley & Srygley, 1994
Aphrissa statira 5.3 36 / A / A / FF Dudley & Srygley, 1994
4 3 / A / A / FF Srygley, 2001
Appias drusilla 4 5 / A / A / FF Dudley & Srygley, 1994
4 1 / A / A / FF Srygley, 2001
Ascia monuste 3.1-4.5   / A / G / FF Nielsen, 1961
3.4 14 / A / A / FF Srygley, 2001
Colia philodice 1.3-2   / A / G / FF Leigh & Smith, 1959
Colias eurytheme 2.45 (0.15) 9 / A / G / FF Srygley & Kingsolver, 1998
Eurema proterpia 2.9 1 / A / A / FF Dudley & Srygley, 1994
Itaballia demophile 2.7 3 / A / A / FF Dudley & Srygley, 1994
Itaballia pandosia 2.2 2 / A / A / FF Dudley & Srygley, 1994
Melete florinda 1.8 1 / A / A / FF Dudley & Srygley, 1994
Phoebis agarithe 4.1 3 / A / A / FF Srygley, 2001
Phoebis argante 4.9 18 / A / A / FF Dudley & Srygley, 1994
Phoebis philea 4.9 6 / A / A / FF Dudley & Srygley, 1994
Phoebis sennae 3.61 66 / A / G / FF Correale & Crocker, 1976
4.1 45 / A / G / FF Balciunas & Knopf, 1977
5.1 45 / A / A / FF Balciunas & Knopf, 1977
6.2 3 / A / A / FF Dudley & Srygley, 1994
4 25 / A / A / FF Srygley, 2001
Phoebis trite 4.8 2 / A / A / FF Dudley & Srygley, 1994
Pieris rapae 2.35 (0.28) 9 / A / G / FF Srygley & Kingsolver, 1998
Pontia occidentalis 2.1 (0.43) 9 / A / G / FF Srygley & Kingsolver, 1998
Sphingidae Manduca sexta 5   / X / A / FC Willmott & Ellington 1997/1997b
Manduca sexta (towards light) 0.4 (0.03) 61 / A / A / FC Spencer et al., 1997
Manduca sexta (away from light) 0.29 (0.02) 61 / A / A / FC Spencer et al., 1997
0.57 38 / A / A / FC Stevenson et al., 1995
1.02 37 / A / A / FC Stevenson et al., 1995
1.58 62 / A / A / FC Stevenson et al., 1995
3.38 93 / A / A / FC Stevenson et al., 1995
22.3   / ? / G / ? Lane, 1941
13.4   / X / G / FF McKeown, 1944
Tortricidae Grapholita molestat 0.80 (0.27)   / A / A / WT Baker et al., 1984
Uraniidae Urania fulgens (female) 3.74 (0.26) 14 / A / A / FF DeVries & Dudley, 1990
Urania fulgens (male) 4.08 (0.21) 13 / A / A / FF DeVries & Dudley, 1990

Return to top

Neuroptera

Family Genus species Speed No. / Range / Type / Method Source
Chrysopidae Chrysopa carnea 0.76   / A / G / FC Lewis & Taylor, 1967

Return to top

Odonata

Family Genus species Speed No. / Range / Type / Method Source
Aeshnidae Austrophlebia costalis 25-27   / ? / G / ? Lane, 1941
Libellulidae Sympetrum sanguineum 2-5   / A / A / FC Wakeling & Ellington, 1997
Libellula luctuosa 1.86 (0.58) 1805 / A / G / FF Tuxhorn & McShaffrey, 1998
0.41-4.44 1805 / R / G / FF Tuxhorn & McShaffrey, 1998
Libellula lydia 2.12 (0.62) 4411 / A / G / FF Tuxhorn & McShaffrey, 1998
0.68-6.64 4411 / R / G / FF Tuxhorn & McShaffrey, 1998
Pachydiplax longipennis 1.54 (0.55) 59 / A / G / FF Tuxhorn & McShaffrey, 1998
0.53-2.89 59 / R / G / FF Tuxhorn & McShaffrey, 1998
Tramea lacerata 2.61 (0.85) 93 / A / G / FF Tuxhorn & McShaffrey, 1998
1.59-6.88 93 / R / G / FF Tuxhorn & McShaffrey, 1998

Return to top

Orthoptera

Family Genus species Speed No. / Range / Type / Method Source
Acrididae Locusta migratora 3.6 (0.2)   / A / A / FC Kutsch & Fuchs, 2000
4.6   / A / G / FF Baker et al., 1981
4.6   / A / G / FF Gewecke
Schistocerca gregaria 4.1 77 / A / A / FC Fischer & Ebert, 1999
4.48 37 / A / A / FF Fischer & Kutsch, 1999
2.5   / N / A / FP Katz & Gosline, 1993
4.5-5   / A / A / T Riley et al., 1988
0.89   / A / A / FF Sayer, 1965
5.36   / A / G / FF Sayer, 1965
3.1 16 / A / A / FF Waloff, 1972
4.3 17 / A / A / FF Waloff, 1972
5.3   / A / A / FF Waloff, 1972
5.0   / A / A / FF Waloff, 1972
5.0 12 / A / A / FF Waloff, 1972
6.1 17 / A / A / FF Waloff, 1972
5.1 11 / A / A / FF Waloff, 1972
8.1 17 / A / A / FF Waloff, 1972
6.1 21 / A / A / FF Waloff, 1972
6.3   / A / A / FF Waloff, 1972
7.8 16 / A / A / FF Waloff, 1972
6.2 23 / A / A / FF Waloff, 1972
9.3 12 / A / A / FF Waloff, 1972
4.9-8   / A / G / FF Waloff & Rainey, 1951
3.5   / A / A / FC Weis-Fogh, 1976
3.0-4.5 158 / A / A / FC Weis-Fogh, 1956
3.5-5.5   / A / G / FF Weis-Fogh, 1956
2.99   / A / A / FF Weis-Fogh, 1952
2.3-3.5   / A / A / FC Weis-Fogh, 1952
0.5-7   / R / A / WT Zarnack & Wortmann, 1989
3   / A / A / WT Zarnack & Wortmann, 1989
3.7   / A / A / FC Kutsch et al., 1999
Aphididae Myzus persicae 0.3-0.75   / A / A / FF Kennedy & Thomas, 1974
Phorodon humili 7   / A / A / FC Hardie et al., 1996
Mantidae unknown 1.9-3.8   / A / A / FC May, 1999

Return to top

Plecoptera

Family Genus species Speed No. / Range / Type / Method Source
Ausroperlidae Acruroperla atra 2.24   / A / G / FF Marden et al., 2000
Tasmoperla thalia 1.56 3 / A / G / FF Marden et al., 2000
Caopniidae various 3.2 (0.29)   / A / G / FF Marden et al., 2000
Capniidae Paracapnia angulata 2.4 1 / A / G / FF Kramer & Marden, 1997
Chloroperlidae Swelta onkos 2.9 1 / A / G / FF Kramer & Marden, 1997
various 6.3 (1.5)   / A / G / FF Marden et al., 2000
Gripopterygidae various 4.4 (1.66)   / A / G / FF Marden et al., 2000
Leuctridae various 4.2 (0.19)   / A / G / FF Marden et al., 2000
Leuctra hippopus 3.7 (0.7) 28 / A / G / FF Kramer & Marden, 1997
Leuctra sibleyi 3.4 (0.54) 4 / A / G / FF Kramer & Marden, 1997
Nemouridae Amphinemura nigritta 2.3 (0.66) 7 / A / G / FF Kramer & Marden, 1997
Ostrocerca spp. 1.6 (0.42) 4 / A / G / FF Kramer & Marden, 1997
Paranemoura perfecta 2.6 (0.54) 8 / A / G / FF Kramer & Marden, 1997
various 3.2 (0.29)   / A / G / FF Marden et al., 2000
Notonemouridae various 6.3 (1.5)   / A / G / FF Marden et al., 2000
Perlodidae Isoperla sp. 2.4 1 / A / G / FF Kramer & Marden, 1997
Perlodidae various 6.3 (1.5)   / A / G / FF Marden et al., 2000
Taeniopterygidae various 3.2 (0.29)   / A / G / FF Marden et al., 2000
Taeniopteryx burski 2.3 (0.36) 5 / A / G / FF Kramer & Marden, 1997
2.9 (0.9) 5 / A / G / FF Marden & Kramer, 1994

Return to top

Psocoptera

Family Genus species Speed No. / Range / Type / Method Source
Stenopsocidae Stenopsocus immaculatus 0.85   / A / G / FC Lewis & Taylor, 1967

Editor's Note

This chapter replaces an early version of Chapter 1, by J.H. Byrd. - T.J. Walker, April 2003.

Return to top