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ABSTRACT The twospotted spider mite, Tetranychus urticaeKoch, is among the most economically
important pests in strawberries (Fragaria spp.). As T. urticae feeds, it ingests mesophyll cells that
contain pigments essential for physiologic function and alters radiant energy use of the leaf tissue,
severely compromising plant health and productivity. In our study, diffuse reßectance spectroscopy
in the visible and near infrared (VNIR) portions of the spectrum was used to identify speciÞc spectral
regions altered by T. urticae feeding and to quantitatively assess T. urticae density. During the
2006Ð2007 growing season, 80 strawberry leaßets with varying levels of T. urticae infestation were
collected. Spectral classiÞcation of both mite density (continuous) and mite density class (categorical)
were developed. Spider mite density classes were low infestation (0Ð20 mites/leaßet), moderate
infestation (20Ð50 mites/leaßet), and high infestation (�50 mites/leaßet). Continuous spectral
prediction for leaf infestation was developed using partial least squares (PLS) regression. ClassiÞcation
trees were used to train spectra to categorical levels of infestation. Both models were calibrated with
67% of the samples, and accuracy was evaluated using the remaining 33%. Categorical validation
accuracy was 81%, with odds ratios for correctly predicting extreme categories (low and high) of 33
and 47.7, respectively. Continuous validation efÞciency was also high, with an r2 between predicted
and observed of 0.85 and a root-mean-squared error (RMSE) of 12.2 mites per leaf. Developing a
spectral pest monitoring system would provide a diagnostic tool allowing early and effective inter-
vention for precision management of T. urticae in strawberry.

KEYWORDS spider mites, precision pest management, visible and near infrared spectra, Fragaria
spp.

Twospotted spider mite, Tetranychus urticae Koch, is
one of the most economically important pests in straw-
berries (Fragaria spp.). T. urticae feed on the under-
side of the leaf, piercing the chloroplast containing
palisade and spongy parenchyma cells in the meso-
phyll layer at a rate of 18Ð22 cells/min (Jeppson et al.
1975, Sances et al. 1979). As T. urticae consumes the
chloroplasts and their salivary injections dissolve and
digest cell structural elements (Kielkiewicz 1985,
Smith and Smith 2003), radiant energy use efÞciency
is reduced, which will eventually reduce vegetative
growth and yield (Sances et al. 1981, Kielkiewicz 1985,
Reddall et al. 2004). HighT. urticaedensities cause leaf
chlorosis, stunting, and yield reduction (Huffaker et
al. 1969, Sanches et al.1979, Wyman et al. 1979, Oatman

et al. 1985, Sonneveld et al. 1996, Walsh et al. 2002,
Cloyd et al. 2006).

Chloroplasts contain several pigments (carote-
noids, phycobilins, and chlorophylls a and b) that
produce strongly diagnostic patterns of electromag-
netic radiation absorbance and reßectance (Meyer et
al. 1973). Because T. urticae feed on the chloroplast-
containing cells, disrupting the ability of the pigments
to absorb electromagnetic radiation, spectral detec-
tion of T. urticae feeding damage in the visible region
is plausible (Meyer et al. 1973). Spectral diagnosis of
healthy vegetation is well known; Fitzgerald et al.
(2004) showed that stressed leaves show predictable
variation in reßectance.

The loss of cell contents (including the chloro-
plasts) caused by T. urticae feeding also affects the
ability of a plant to absorb and reßect in the near
infrared (NIR; 700Ð1,100 nm) region of the spectrum
(Pinter et al. 2003, Reisig and Godfrey 2007). Plants
have evolved to be highly reßective in the near infra-
red to protect leaf tissue from absorbing excessive
radiant heat that may lead to denaturing of essential
proteins (Pinter et al. 2003). The mesophyll layer
structure regulates NIR reßectance by affecting in-
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ternal scattering at the cell wallÐair interface (Pinter
et al. 2003). Steep gradients in reßectance between
red (650Ð700 nm) and NIR, known as the “red edge,”
indicates plant stress frequently caused by dehydra-
tion and cellular damage (Pinter et al. 2003, Lillesand
et al. 2004).

Studies by Fitzgerald et al. (2004) and Landeros et
al. (2004) showed that pest damage can be detected
from spectral reßectance changes in large agricultural
Þeld crops like cotton. Correlations betweenT. urticae
damage and reduced photosynthetic function of
strawberry plants has been documented extensively
(Sances et al. 1979, 1981; Kielkiewicz 1985; Iatrou et al.
1995; Reddall et al. 2004). However, quantitative as-
sessment of T. urticae infestation on strawberry using
spectral information has not been published. If spec-
tral information provides robust diagnosis of infesta-
tion, the implications for early detection and spatial
pest management are signiÞcant. Our objective in this
study is to identify regions of the visible/near infrared
(VNIR) spectrum that are affected by T. urticae in-
festation and develop statistical assessment of T. urti-
cae infestation from foliar spectra. The primary beneÞt
of spectral pest monitoring is rapid diagnosis. With
improved diagnostic measures, early intervention is
possible, which is likely to decrease economic and
ecological costs associated with T. urticae infestation
(Dayang and Kamaruzaman 1999).

Materials and Methods

Field Plots. Sixteen 7.3 by 7.3-m with 11-m buffer
between plots were planted with strawberry variety
Festival at the University of Florida Plant Science
Research and Education Unit, near Citra, FL (82.17�
W, 29.41� N). Each plot contained six double rows of
strawberries each containing transplants 35 cm apart
within and between rows. Strawberries were planted
in early October (2006) on raised beds over black
plastic mulch and fertilized, weeded, and sprayed with
fungicides using standard commercial practices (Brown
2003).
Sampling and Assessment of T. urticae Infestation.

Twenty leaßets were collected from each of the ex-
perimental plots once per week for 4 wk between
December 2006 and January 2007 totaling �80 leaßets.
Leaßets were taken randomly from each plot and
stored individually in Zipper Seal Storage Bags (Amer-
ican Value; Dolgencorp, Goodlettsville, TN) and
transported back to the Small Fruits and Vegetable
integrated pest management (IPM) Laboratory at the
University of Florida, Gainesville, FL. Leaßets were
examined under a dissecting microscope to determine
the number of T. urticae motiles per leaßet. Each
individual leaßet was placed back into its original
storage bag, labeled with the number of mites found on
the leaßet, andscannedwithin2haftercollectionbefore
signiÞcant dehydration and foliar damage occurs.
Spectral Scanning and Data Processing. Leaßet dif-

fuse spectral reßectance was obtained using a Field-
spec FR spectro-radiometer (Analytic Spectral De-
vices, Boulder, CO), with Spectralon (LabSphere,

Hutton, NH) as a white reference. This instrument has
a spectral resolution of 3 nm in the visible spectrum
(full width at half-maximum [FWHM]), 10 nm in the
NIR, and a range of 350Ð2,500 nm. Internal interpo-
lation results in spectra with 1-nm resolution across
the entire spectra.

Two areas (3.2 cm2) of the adaxial side of each
collected leaßet were scanned with a contact probe
containing a high temperature tungsten Þlament lamp,
a Þber optic collector oriented at 15� off nadir for
collecting diffuse spectra over a 10-mm-diameter spot,
and leaf-clip assembly to minimize stray light inter-
ference. After the Þrst scan, the leaf was rotated 90�
and rescanned; spectral precision was maintained by
rescanning leaves that failed to satisfy a �1% error
criterion between the Þrst and second scans. White
reference scans were obtained every 10 min to control
for sensor drift.

High-resolution spectra at 1-nm wavelength inter-
vals were resampled using moving window averaging
to 10-nm bands to expedite statistical analysis and to
better reßect instrument capabilities. All analyses
were performed on both raw relative reßectance and
on data following Þrst derivative transformation with
second-order smoothing (Fearn 2000); overall, pre-
dictions using raw reßectance were more accurate and
homoscedastic so only these are reported. Principal
components analysis of reßectance spectra was used
to visualize the high-dimensional data and to identify
spectral outliers before predictive modeling; in this
data set, no spectral outliers were detected.

Data Analysis

Spectral Determination of T. urticae Infestation
Levels. Processed data were analyzed using partial
least squares (PLS) regression (Beebe et al. 1998) to
assess the efÞcacy of spectral prediction of mite num-
bers. PLSs have been widely used to draw chemomet-
ric inference from high-dimensional spectral data
(Reeves et al. 1999, Cozzolino and Moron 2003). We
chose PLS over principle component regression be-
cause, in PLS, dimensionality reduction is based on
covariance of spectral predictors with response vari-
ables (e.g., mite density), whereas in principal com-
ponents regression, the dimensionality reduction is
based on the spectral data alone (Chang et al. 2001).
Spectral training was done using 62% of the samples
and hold-out validation data using the remaining 38%
of the samples. Hold-out validation was done to re-
duce the inßuence overÞtting caused by data set di-
mensionality and limited sample size; sample alloca-
tion to calibration or validation sets was done
randomly. Prediction efÞciency was measured using
the coefÞcient of determination (r2), root-mean
squared error (RMSE), and the relative performance
determination (RPD) (Dunn et al. 2002); we com-
puted values for both calibration and validation but
focus on validation results. Relative performance de-
termination is the preferred diagnostic because it
scales model error by population dispersion (RPD �
SD/RMSE); relative performance determination val-

138 ENVIRONMENTAL ENTOMOLOGY Vol. 38, no. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/ee/article/38/1/137/492353 by U

niversity of Florida user on 17 February 2024



ues exceeding 2.0 are generally considered sufÞcient
for prediction (Chang et al. 2001, Dunn et al. 2002).
Spectral Determination of Categories of T. urticae
Infestation. Because pest management decisions are
generally made based on categorical levels of infesta-
tion (Pedigo et al. 1986, Bode and Calvin 1990), we
examined the spectral separability of practical T. ur-
ticae categories by dividing the leaves into three cat-
egories: low density (0Ð20 motile mites/leaßet); mod-
erate density (20Ð50 motile mites/leaßet); and high
density (�50 motile mites/leaßet). We used classiÞ-
cation tree (CT) analysis to calibrate and validate
categorical prediction of mite density class from spec-
tral response data; classiÞcation trees are comprised of
recursive binary partitions in the data based on pre-
dictor variable threshold values (Breiman et al. 1984).
Each partition maximizes the purity of the subsequent
nodes with respect to the a priori categorical targets
(mite infestation). To avoid model overÞtting, the
calibrated tree was developed using v-fold cross-val-
idation (v � 10), and its prediction efÞciency was
evaluated using the hold-out validation data (Stein-
berg and Colla 1997). CT models were developed in
the classiÞcation and regression tree (CART) soft-
ware environment (v 5.0; Salford Systems, LA Jolla,
CA).

CT model predictions were evaluated using two
diagnostic measures. First, overall, producer, and user
accuracy deÞned, respectively, as the total number of
correctly classiÞed samples divided by the total num-
ber of samples, the number of correct assignments in
a category divided by the total number of observations
in that category, and the number of correct assign-
ments in a category divided by the total number of
assignments to that category. Second, the odds ratio
(OR) of correct classiÞcation provides a unitless met-

ric of model concordance with observations (Agresti
1990). Models with large statistically signiÞcant OR
values (i.e., �10.0) can be used for diagnostic pur-
poses; for this three-category model, ORs and associ-
ated SEs were computed for each class in relation to
the other two. Given the need for early detection, we
are particularly interested in the OR values for spec-
tral diagnosis of low mite infestation.

Results

Spectral Data. The population of samples displayed
diagnostic variability most strongly at the “red edge”
(�760 nm) and throughout the short-wave NIR (800Ð
1,300 nm), with slightly less variability in the green
visible region (520Ð580 nm; Fig. 1). Although concor-
dance in spectral pattern is strong across all mite
density levels, particularly for the short wave NIR and
most of the visible range, differences in both albedo
and absorbance feature shape among classes of T.
urticae infestation are clear.

Principal component analysis condensed raw re-
ßectance data into Þve principal factors encompassing
nearly 98% of the total variance. A bi-plot of the Þrst
two principal components (explaining 65.6 and 17.5%
of the variance, respectively; Fig. 2) shows qualita-
tively the global separation of T. urticae infestation
categories. Spectral waveband loading on these com-
ponents is shown in Fig. 1 as the absolute value of
PearsonÕs correlations between component and wave-
band; PC1 seems to be strongly associated with sample
albedo, whereas loading on PC2 indicates strong con-
cordance with regions exhibiting spectral separation
between mite density classes.
Accuracy of T. urticaeDensity Prediction. The pre-

dictions of T. urticae density from partial least squares

Fig. 1. Variation of the spectral signatures of strawberry leaves at different levels of T. urticae infestation. Relative
predictor importance (scaled to 1.0) for PLS modeling and absolute value of the correlation between wavebands and extracted
principal components is shown.
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regression correlated strongly with observed values
for the holdout validation data set (Fig. 3). The vali-
dation r2 � 0.85, and the RPD (2.75) suggest the
potential for prediction of continuous T. urticae infes-
tation using spectral methods. The RMSE value is 12.2
mites per leaßet, suggesting low model expected error
rates; this rate is comparable to the rate associated
with mite detection and enumeration. Predictor im-
portance for the PLS model (Fig. 1) suggests that
those areas of the spectrum that are qualitatively use-
ful for discriminating classes of T. urticae infestation
are selected by the PLS model for quantitative pre-
diction of mite density.
Accuracy of Categories of Mite Infestation. Cate-

gorical prediction accuracy was very high, with overall
accuracy exceeding 80% for hold-out validation data
despite a substantial decline in accuracy in relation to
calibration (Table 1). The ORs for correct prediction
to each category suggest adequate (OR � 15) diag-
nostic accuracy for all classes and excellent efÞciency
(OR � 30) in diagnosing the high and low mite cat-
egories from the others, a result with important im-
plications for early infestation detection.

Discussion

Leaßet spectra seem to be strongly affected by mite
density; principal components analysis, an unsuper-
vised classiÞcation technique, seems to extract mea-
sured categories of infestation relatively well. More-
over, spectral change caused by mite infestation did
not occur evenly across the visible and NIR spectrum.
Because T. urticae feed primarily on cells containing
chloroplasts in the spongy mesophyll layer, the ob-
servation of maximum change in the green (�510 nm)
and red (�700 nm) regions is expected. However, the

Fig. 2. Bi-plot of principal components 1 and 2 from strawberry leaßet spectra at multiple T. urticae infestation densities;
mean values for an infestation class (�2 SE) are shown with enlarged symbols.

Fig. 3. Regression of predicted versus observed raw T.
urticae numbers/leaßet.
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differences in the NIR (800Ð1,300 nm) may be the
result of changes in leaf water content caused by T.
urticae feeding (Wedding et al. 1958). Discrimination
of high infestation density from low and moderate can
be achieved in several regions (800Ð1,300, 1,600-1,800,
and 2,200Ð2,400 nm), but discriminating low from
moderate infestation is really only possible in the 800-
to 1,300-nm range. Because the objective is to obtain
early warning detection (i.e., before high infestation),
this spectral range is the most likely to be useful for
diagnostic purposes.

Fitzgerald et al. (2004) noted that the strawberry
spider mite (Tetranychus turkestani Ugarov and Ni-
kolsk) damage in cotton is observable in the 850-nm
wavelength, and subsequent work by Fitzgerald et al.
(2005) showed that spectral variation in the green
region was difÞcult to detect in the Þeld from com-
mercial satellite data without spectral unmixing. Our
Þndings suggest that ground-based sensors with Þner
spectral resolution and less atmospheric interference
can detect T. urticae with accuracy and precision in
both the green bands and elsewhere in the visible and
near infraredportionsof the spectrum.Further studies
are needed to validate our Þndings under Þeld con-
ditions, particularly given the Þeld portability of the
instrument used for this work.

Strawberry plants are most susceptible to dehydra-
tion and nutrient deÞciency associated with T. urticae
damage during critical vegetative growth period early
in the season (Oatman and Voth 1972, Sances et al.
1981, Rhodes et al. 2006). Early detection of T. urticae
is essential in achieving control as they have a high
level of fecundity and a rapid life cycle. At tempera-
tures �33�C a female can lay as many as 20 eggs per
day and the lifecycle can be as short as 7 d (Shanks and
Doss 1989, Grostal and Dicke 2000, White and Liburd
2004). When infestation reaches a high level, chemical

and biological controls are unable to reduce T. urticae
populations below the economic threshold, which in
strawberries is considered to be between 5 and 20
motile mites per leaßet (Oatman and Voth 1972, Hard-
man et al. 2005). Laboratory and Þeld experiments
show that effective biological control agents must be
released early in the season when there is a low inci-
dence of spider mite infestation (Greco et al. 2005,
Fraulo and Liburd 2007).

The ultimate objective of our study was to detect T.
urticae in strawberry leaßets before infestations are high
enough to preclude management and before physiolog-
ical damage is visible to the human eye. Currently, grow-
ersmonitor theirÞeldsbymanually scoutingwithahand
lens to inspect individual leaßets for T. urticae presence.
Using VNIR spectroscopy allows efÞcient and effective
detection. Large scale technology in conjunction with
infrared sensor systems is already popular for detection
of agricultural pests (Zhang et al. 2002, Fitzgerald et al.
2005, Reisig and Godfrey 2007). This technological
method enables growers to detect and monitor growing
pest populations and identify “hot-spots” for precision
pest management. Several options exist for integrating
this technology. A spectrometer can be mounted on a
tractor or any GPS enabled Þeld equipment. With fore-
optics with a conical Þeld of view of 25�, the image is
enlarged with respect to the height of the sensor, allow-
ing for deployment of as high as 20 m above the target
with no detectable effect of signal to noise ratio. Similar
technologyhasbeenusedextensively insoil andnutrient
assessment inagriculturalÞelds(Zhangetal.2002,Pinter
et al. 2003,Pydipati et al. 2005, Shaw2005), so integration
into pest management protocols is feasible.
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