Baldwin

Barfield - None

Bloomquist

Boucias
Lietze, V.-U., G. Schneider, P. Prompiboon, and D.G. Boucias. 2010. The detection of *Bacillus thuringiensis* in mass rearing of *Cactoblastis cactorum* (Lepidoptera: Pyralidae). Florida Entomologist 93 (3): 385-390.
family 1) isolated from the gut of the lower termite *Reticulitermes flavipes*. Insect Biochemistry and Molecular Biology 40 (8): 611-620.

Branham

Buss

Capinera

Choate - None

Crow

Cuda

Daniels

Dickson - None

Ellis

Fasulo

Frank

Gillett-Kaufman

Hahn

Hodges

Hoy

Kaufman

Leppla - None

Leppla

Liburd

McAuslane - None

McSorley

Medal

Miller

Oi - None

Pereira

Scharf

Stocks

Webb

White - None

Miscellaneous

Ratcliffe, B.C., and R.D. Cave. 2010. The Dynastinae (Coleoptera: Scarabaeidae) of the Cayman Islands (West Indies), with a description of Tomarus adoceteus, new species, (Pentodontini) and Caymania nitidissima, new genus and species, (Phileurini) from Little Cayman. Insecta Mundi 0139: 1-15.
GRANTS 2010 - ENTOMOLOGY/NEMATOLOGY FACULTY

Baldwin
$7,993 - UF/IFAS Extension - Enhancement Grant - iPest - Interactive Mobile Field Guide to Urban Pests - Co-PI (with P. Koehler and R. Pereira)

Barfield - None

Bloomquist
$297,770 (my share in 2010) - NIAID - Development of vector-specific, resistance-breaking insecticides to reduce malaria transmission - Co-PI (with P. Carlier, PI, Virginia Tech; J. Li, Virginia Tech; and M. Totrov, Molsoft LLC, San Diego, CA) - (from total $3,557,712; my share $1,114,101 total)
$200,000 (my share in 2010) - USDA Cooperative Research Agreement - Discovery and development of new public health pesticides - PI - (from total $1,000,000)
$49,750 (for 2010, all spent at Virginia Tech to support technical staff and a Ph.D. student, James Mutunga) - Innovative Vector Control Consortium (the Consortium is underwritten by the Bill and Melinda Gates Foundation), Liverpool, England - Identification of Contact-Toxic Bivalent Carbamates - Co-PI with P. Carlier (Virginia Tech) - (from total $99,500)

Boucias
$269,000 - NRI/USDA - A novel viral pathogen for biological control of the housefly - PI
$75,000 - Specific Cooperative Agreement with ARS - Chemical biology and molecular approaches to pest control - PI
???? - NRI/USDA - Functional genomics of the termite gut transcriptome - Co-PI
$120,000 - CPBR Genomic Dissection of Cellulose Utilization in Termites - PI

Buss
$191,700 (2 year total) - USDA/NIFA PMAP - Developing, demonstrating and disseminating cultural control recommendations for chinch bugs - PI (with J. Gillett-Kaufman and L. Trenholm) - (Year 1: $94,403; Year 2: $97,297)
$120,000 (2 year total) - T-Star-C grant - Developing sustainable controls for the suppression of the invasive Caribbean crazy ant (Paratrechina pubens) in natural and urban landscapes - PI (with D. Oi and S. Valles) - (Year 1: $23,345; Year 2: $40,860)
$300 (estimated value) - Syngenta - In kind gift: 14 measuring cups, duffle bag, and 3 sets of safety gear (gloves, goggles, plastic bags, and towels)
$400 (estimated value) - Anderson's Golf Products - In-kind gift: SR-2000 Rotary professional spreader
$2,500 (estimated value) - Nick Dennis (PCO in Jacksonville) - In-kind gift: Bluebird aerator
$26,300 (total) - Grant-in-Aid from Arysta Life Science ($3000), DuPont ($8000), Scotts ($6300), Valent ($9000)

Choate - None

Crow - None
$10,469 - United States Golf Association 1 year extension Bermudagrass (*Cynodon* spp.) and seashore paspalum (*Paspalum vaginatum*) cultivar response to the sting nematode (*Belonolaimus longicaudatus*).

$273,050 – Industry contracts and grants.

Cuda

$512,379 - USDA, NIFA, RAMP - Sustainable approach for integrated management of fluridone herbicide resistant hydrilla in the U.S. - PI

$153,000 - Osceola County, FL / US EPA - Osceola County aquatic weed control and information project - Co-PI

$9,000 and $18,000 - AERF - Effect of temperature and water quality on the performance and geographic distribution of *Cricotopus lebetis* (Diptera: Chironomidae), an herbivore of *Hydrilla verticillata* in Florida - Co-PI

$30,000 - FWC - Biological control of wetland-nightshade, *Solanum tampicense* (Solanaceae), in Florida - Co-PI

Daniels

$12,000 (2 year total) - U.S. Fish and Wildlife Service - Remote surveys of the endangered Miami blue butterfly - PI (received in 2010 but no funds expended)

$5,000 - FAO Schwarz Foundation - Monarchs, milkweeds and butterfly larvae: An educational brochure for the public - Co-PI

$494,509 - NSF - Call the wild: Fostering understanding of the nature of science - Co-PI

$109,331 - National Fish and Wildlife Foundation - Study of abundance and diversity of native bees (FL) - Co-PI

$86,757 - NSF - Project Butterfly WINGS: Winning Investigative Network for Great Science - Co-PI

$365,299 - Institute of Museum and Library Services - Imperiled butterfly conservation and management - PI ($121,340 applied for 2010)

$40,000 - Florida Wildflower Foundation - Wildlife viewing: Fostering awareness, interest and knowledge about Florida's wildflowers and wildlife - Co-PI

Dickson (Grants-in-Aid)

$85,800 - DevGen

$65,400 - Makhteshim-Agan of North America

$10,000 - Syngenta

$22,000 - Bayer CropScience

$103,949 - DuPont

$12,000 - Divergence

Ellis

$23,169 - Project *Apis mellifera* Grant - Varroa mite (*Varroa destructor*) control using contemporary RNAi technology - PI

$10,940 - Wachovia/Wells Fargo - Supporting honey bee research and extension - PI

$105,000 - Florida Department of Agriculture and Consumer Services Grant - RNAi control of *Varroa destructor* in honey bee colonies - PI
Fasulo - None

Frank
$18,000 (available at beginning of 2010 approximately, total $46,762) - TSTAR - Control of Mexican bromeliad weevil - an invasive species (TSTAR)
$20,000 - Southern IPM - Capstone Grant for Extension - Controlling invasive mole crickets in Florida pastures
$7,000 - IFAS Extension Program Enhancement Grant

Gillett-Kaufman
$512,379 - NIFA RAMP - Sustainable approach for integrated management of herbicide resistant hydrilla in the U.S. - Co-PI (with J. Cuda, J. Bradshaw, K. Gioeli, W. Overholt, R. Hix and J. Shearer)
$193,409 - NIFA PMAP - Developing, demonstrating and disseminating cultural control recommendations for chinch bugs - Co-PI (with E. Buss and L. Trenholm)
$88,984 - National Association of State Departments of Agriculture (NASDA) - Good neighbor practices and schools - Co-PI (with F. Oi)
$229,500 - CSREES-Food and Agricultural Sciences National Needs Graduate Fellowship Grant - Graduate Training for Plant and Crop Biosecurity - Co-PI (with N. Leppla and R. McGovern)

Hahn
$440,000 - NSF - Integrating physiological and genetic mechanisms to understand the evolution of cold tolerance
$50,000 - IFAS Dean's Innovation Funds - Engineering antioxidants to improve the sterile insect technique, a promising but underused non-pesticidal control technology

Hodges
$3,000 - UF/IFAS - Exotic species and biosecurity issues, teaching enhancement grant - PI
$35,000 (my portion from $44,000) - USDA-NIFA - Multimedia educational efforts to promote enhanced pest detection for small farm audiences - PI
$91,257 (my portion from $824,190) - USDA-NIFA - Regional Plant Diagnostic Center Laboratory - Co-PI
$9,029 (my portion from $29,942) - USDA-APHIS-PPQ - Identification tool for arthropod pests of citrus - PI
$7,057 (my portion from $29,985) - USDA-APHIS-PPQ - Identification tools for pests, diseases, and disorders for cultivated palms - PI
$18,803 - USDA-APHIS-PPQ - Identification tool for arthropod pests of citrus - PI
$188,785 (my portion from $922,936) - USDA-NIFA - Regional Plant Diagnostic Center Laboratory - Co-PI
$10,993 - LSU AgCenter, USDA-NIFA - Development of an online-interactive train-the-trainer first detector entomology educational program for county agents - PI

Hoy
$74,800 - USDA-APHIS - Classical biological control of red palm mite - PI
Kaufman
$36,000 (from 2 year total $198,162) - NIFA-PMAP - Development and delivery of an innovative, alternative pest management program for the brown dog tick - PI
$57,735 (from 2 year total $171,231) - USDA SRIPM - Improving management of the brown dog tick, *Rhipicephalus sanguineus*, in southeastern residential environments - PI
$3,000 (from 2 year total $10,625) - W. F. Young, Inc. - Evaluation of the fly repellant efficacy of two natural fly control sprays - PI
$50,000 (from 2 year total $119,977) - USDA-TSTAR - Resistance in the southern cattle tick, *Boophilus microplus*, to acaricides used on St. Croix and Puerto Rico - PI

Koehler
$111,732 for a 2-year project - Tropical and Sub Tropical Agricultural Research - USDA-CSREES - Development and testing of new bait formulations for the invasive Caribbean crazy ants
$14,000 for a 1-year project - Valent BioSciences - Cockroach gel bait testing
$100,000 for a 1-year project - USDA-ARS SCA - Aerosol applications for control of sand flies and mosquitoes
$133,960 for 1 year - Industry Sponsors - Insecticide evaluations

Lawrence - None

Leppla
$170,179 - NIFA, EIPM-CS - Extension Integrated Pest Management Coordination and Support Program for the University of Florida (with B. Hochmuth, J. Funderburk, F. Fishel, and C. Connelly)
$254,422 - Florida Specialty Crops Block Grant - State-wide Implementation of novel push-pull strategies for IPM of thrips (with J. Funderburk et al.)
$18,803 - USDA/APHIS - Identification tool for arthropod pests of citrus (with A. Hodges)

Liburd
$33,246 - Specialty Block State Grant - Developing integrated pest management strategies for controlling key pests in Florida blueberries - PI (with E. Rhodes and D. Miller) - ($125,000 total award 2 year award)
$1,500 - SHARE - Florida Blueberry Growers Association (from total $3,000)

McAuslane
$92,778 - FCPARC, Florida Citrus Advanced Technology Program - Development and optimization of biorational tactics for Asian citrus psyllid control and decreasing Huanglongbing incidence - Co-PI

McSorley
$21,664 - USD A, ARS (SCA) - Management of root-knot nematodes and other soilborne pests in floriculture production systems - PI
$469,533 - USD A, CSREES Methyl Bromide Transitions Program - Short-term methyl bromide alternatives for the Florida floriculture industry - PI
$142,033 (UF portion) - USDA, CSREES Crops at Risk (CAR) Program - Using cover crops to build an ecologically based pest management program for vegetable production - Co-PI (subcontract from University of Hawaii)

Medal - None

Miller - None

Oi - None

Pereira
$111,732 for a 2-year project - Tropical and Sub Tropical Agricultural Research - USDA-CSREES - Development and testing of new bait formulations for the invasive Caribbean crazy ants

Webb
$249,917 - USDA Specialty Crops grant - Development of a decision support system for managing viral watermelon vine decline and other vegetable diseases caused by white fly-transmitted viruses in the southeast - Co-PI (PI, W. Turechek, USDA)
$49,000 - Gifts to SHARE

White - None
TEACHING SUMMARY -- ENTOMOLOGY AND NEMATOLOGY FACULTY
CALENDAR YEAR 2010
SPRING 2010

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>ENR</th>
<th>INSTRUCTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS 2931</td>
<td>Honors Biology with Fireflies</td>
<td>21</td>
<td>Lloyd</td>
</tr>
<tr>
<td>ALS 3203</td>
<td>PC Use in Agriculture - Web</td>
<td>125</td>
<td>Choate</td>
</tr>
<tr>
<td>ALS 4162/6935</td>
<td>Consequences of Biological Invasion</td>
<td>2</td>
<td>Cuda</td>
</tr>
<tr>
<td>ALS 4921</td>
<td>Honors Colloquium</td>
<td>21</td>
<td>F. Oi</td>
</tr>
<tr>
<td>ALS 6046</td>
<td>Grant Writing</td>
<td>48</td>
<td>Barfield/Daniels</td>
</tr>
<tr>
<td>ENY 2040</td>
<td>The Insects</td>
<td>137</td>
<td>Baldwin</td>
</tr>
<tr>
<td>ENY 3005/5006</td>
<td>Principles of Entomology - Web</td>
<td>123</td>
<td>Baldwin</td>
</tr>
<tr>
<td>ENY 3005L/5006L</td>
<td>Principles of Entomology Lab</td>
<td>15</td>
<td>Baldwin</td>
</tr>
<tr>
<td>ENY 3005/5006</td>
<td>Principles of Entomology</td>
<td>46</td>
<td>Barfield</td>
</tr>
<tr>
<td>ENY 3005L/5006L</td>
<td>Principles of Entomology Lab</td>
<td>166</td>
<td>Barfield</td>
</tr>
<tr>
<td>ENY 3007C/5160C</td>
<td>Life Science</td>
<td>58</td>
<td>Baldwin</td>
</tr>
<tr>
<td>ENY 3225/5226</td>
<td>Principles of Urban Pest Management</td>
<td>11</td>
<td>Koehler</td>
</tr>
<tr>
<td>ENY 3228/5228</td>
<td>Urban Vertebrate Pest Management - Web</td>
<td>7</td>
<td>Kern</td>
</tr>
<tr>
<td>ENY 4161/6166</td>
<td>Insect Classification</td>
<td>39</td>
<td>Branham</td>
</tr>
<tr>
<td>ENY 4161/6166</td>
<td>Insect Classification - Web</td>
<td>3</td>
<td>Choate</td>
</tr>
<tr>
<td>ENY 4453/6454</td>
<td>Behavioral Ecology and Systematics</td>
<td>27</td>
<td>Branham</td>
</tr>
<tr>
<td>ENY 4660/6665</td>
<td>Med-Vet Entomology / Adv Med-Vet Entomology - Web</td>
<td>23</td>
<td>Koehler</td>
</tr>
<tr>
<td>ENY 4660L/6665L</td>
<td>Med-Vet Entomology / Adv Med-Vet Entomology Lab - Web</td>
<td>23</td>
<td>Koehler</td>
</tr>
<tr>
<td>ENY 4701/6707</td>
<td>Forensic Entomology</td>
<td>9</td>
<td>Kaufman</td>
</tr>
<tr>
<td>ENY 4705L/6707L</td>
<td>Forensic Entomology Lab</td>
<td>6</td>
<td>Kaufman</td>
</tr>
<tr>
<td>ENY 5236</td>
<td>Insect Pest Vector Mgmt - Web</td>
<td>9</td>
<td>Capinera</td>
</tr>
<tr>
<td>ENY 5820</td>
<td>Insect Molecular Genetics</td>
<td>1</td>
<td>Hoy</td>
</tr>
<tr>
<td>ENY 6401C</td>
<td>Insect Physiology</td>
<td>19</td>
<td>Hahn</td>
</tr>
<tr>
<td>ENY 6651C</td>
<td>Insect Toxicology</td>
<td>4</td>
<td>Scharf</td>
</tr>
<tr>
<td>ENY 6651C</td>
<td>Insect Toxicology - Web</td>
<td>2</td>
<td>Yu</td>
</tr>
<tr>
<td>ENY 6905</td>
<td>Insect Physiology</td>
<td>3</td>
<td>Nation</td>
</tr>
<tr>
<td>ENY 6932</td>
<td>IFAS Biocontrol</td>
<td>4</td>
<td>Frank</td>
</tr>
<tr>
<td>ENY 6934</td>
<td>Research and Experiment Design in Entomology</td>
<td>12</td>
<td>Trager</td>
</tr>
<tr>
<td>ENY 6934</td>
<td>Insect/People/Animals</td>
<td>6</td>
<td>Kaufman/Oi</td>
</tr>
<tr>
<td>ENY 6934</td>
<td>Biology-Lepidoptera</td>
<td>5</td>
<td>Sourakov/Willmott</td>
</tr>
<tr>
<td>IPM 3022</td>
<td>Fundamentals of Plant-Pest Management</td>
<td>30</td>
<td>Cave</td>
</tr>
<tr>
<td>MCB 4503/5505</td>
<td>General Virology</td>
<td>128</td>
<td>Maruniak</td>
</tr>
<tr>
<td>NEM 3002/5002C</td>
<td>Principles of Nematology</td>
<td>67</td>
<td>Giblin-Davis</td>
</tr>
<tr>
<td>NEM 6931</td>
<td>Nematology Seminar</td>
<td>1</td>
<td>McSorley</td>
</tr>
<tr>
<td>NEM 6942</td>
<td>Nematode Diagnostics</td>
<td>5</td>
<td>Crow</td>
</tr>
</tbody>
</table>

SUMMER A 2010

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>ENR</th>
<th>INSTRUCTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENY 3007C/5160C</td>
<td>Life Science</td>
<td>56</td>
<td>Baldwin</td>
</tr>
<tr>
<td>ENY 3222C/5223C</td>
<td>Biology and ID of Urban Pests</td>
<td>6</td>
<td>Koehler</td>
</tr>
<tr>
<td>ENY 6822C</td>
<td>Molecular Techniques</td>
<td>8</td>
<td>Maruniak</td>
</tr>
<tr>
<td>ENY 3541C/6934</td>
<td>Tree and Shrub Insects</td>
<td>2</td>
<td>Kern</td>
</tr>
</tbody>
</table>

SUMMER B 2010

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>ENR</th>
<th>INSTRUCTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENY 1001</td>
<td>Bugs and People</td>
<td>222</td>
<td>Barfield</td>
</tr>
<tr>
<td>ENY 2040</td>
<td>The Insects</td>
<td>28</td>
<td>Baldwin</td>
</tr>
<tr>
<td>PMA 4570/6228</td>
<td>Field Techniques in IPM</td>
<td>10</td>
<td>Liburd</td>
</tr>
<tr>
<td>ENY 4905</td>
<td>Ecotourism Internship</td>
<td>1</td>
<td>Barfield</td>
</tr>
</tbody>
</table>
SUMMER C 2010

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>ENR</th>
<th>INSTRUCTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENY 3005/5006</td>
<td>Principles of Entomology - Web</td>
<td>81</td>
<td>Baldwin</td>
</tr>
<tr>
<td>ENY 3005L/5006L</td>
<td>Principles of Entomology Lab - Web</td>
<td>22</td>
<td>Baldwin</td>
</tr>
<tr>
<td>ENY 3005L/5006L</td>
<td>Principles of Entomology Lab</td>
<td>52</td>
<td>Barfield</td>
</tr>
<tr>
<td>ENY 4161/6166</td>
<td>Insect Classification</td>
<td>17</td>
<td>Choate</td>
</tr>
<tr>
<td>ENY 4228</td>
<td>Urban Pesticide Appl-1</td>
<td>2</td>
<td>Koehler</td>
</tr>
<tr>
<td>ENY 4905</td>
<td>Ecotourism Internship</td>
<td>2</td>
<td>Barfield</td>
</tr>
<tr>
<td>ENY 5236</td>
<td>Insect/Pest/Vector Management</td>
<td>9</td>
<td>Capinera</td>
</tr>
<tr>
<td>ENY 5611</td>
<td>Immature Insects</td>
<td>9</td>
<td>Branham</td>
</tr>
<tr>
<td>ENY 6651C</td>
<td>Insect Toxicology</td>
<td>2</td>
<td>Yu</td>
</tr>
</tbody>
</table>

FALL 2010

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>ENR</th>
<th>INSTRUCTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS 2931</td>
<td>Honors Thermal Biology</td>
<td>10</td>
<td>Hahn</td>
</tr>
<tr>
<td>ALS 3153/5136</td>
<td>Agricultural Ecology</td>
<td>51</td>
<td>McSorley</td>
</tr>
<tr>
<td>ALS 3203</td>
<td>PC Use in Agriculture - Web</td>
<td>74</td>
<td>Choate</td>
</tr>
<tr>
<td>ALS 4161/6116</td>
<td>Exotic Species and Biosecurity</td>
<td>14</td>
<td>Hodges</td>
</tr>
<tr>
<td>ALS 4921</td>
<td>Honors Colloquium</td>
<td>25</td>
<td>Barfield</td>
</tr>
<tr>
<td>ENY 1001</td>
<td>Bugs and People</td>
<td>286</td>
<td>Barfield</td>
</tr>
<tr>
<td>ENY 2040</td>
<td>The Insects</td>
<td>79</td>
<td>Baldwin</td>
</tr>
<tr>
<td>ENY 3005/5006</td>
<td>Principles of Entomology - Web</td>
<td>97</td>
<td>Baldwin</td>
</tr>
<tr>
<td>ENY 3005/5006</td>
<td>Principles of Entomology</td>
<td>34</td>
<td>Miller</td>
</tr>
<tr>
<td>ENY 3005L/5006L</td>
<td>Principles of Entomology Lab - Web</td>
<td>41</td>
<td>Baldwin</td>
</tr>
<tr>
<td>ENY 3005L/5006L</td>
<td>Principles of Entomology Lab</td>
<td>115</td>
<td>Barfield</td>
</tr>
<tr>
<td>ENY 3007C/5160C</td>
<td>Life Science</td>
<td>16</td>
<td>Larrick</td>
</tr>
<tr>
<td>ENY 3222C/5223C</td>
<td>Biology and ID of Urban Pests - Web</td>
<td>12</td>
<td>Koehler</td>
</tr>
<tr>
<td>ENY 3510C/6905</td>
<td>Turf and Ornamental Entomology</td>
<td>14</td>
<td>E. Buss</td>
</tr>
<tr>
<td>ENY 4161/6166</td>
<td>Insect Classification - Web</td>
<td>5</td>
<td>Choate</td>
</tr>
<tr>
<td>ENY 4161/6166</td>
<td>Insect Classification</td>
<td>8</td>
<td>Choate</td>
</tr>
<tr>
<td>ENY 4210/5212</td>
<td>Insects and Wildlife</td>
<td>28</td>
<td>Capinera</td>
</tr>
<tr>
<td>ENY 4210/5212</td>
<td>Insects and Wildlife - Web</td>
<td>25</td>
<td>Capinera</td>
</tr>
<tr>
<td>ENY 4455/6905</td>
<td>Social Insects</td>
<td>13</td>
<td>G. Hall</td>
</tr>
<tr>
<td>ENY 4660/6665</td>
<td>Med-Vet / Adv Med-Vet Entomology 1 - Web</td>
<td>22</td>
<td>Koehler</td>
</tr>
<tr>
<td>ENY 4660/6665</td>
<td>Med-Vet Entomology / Adv Med-Vet Entomology</td>
<td>35</td>
<td>Kaufman</td>
</tr>
<tr>
<td>ENY 4660L/6665L</td>
<td>Med-Vet Entomology / Adv Med-Vet Entomology Lab - Web</td>
<td>23</td>
<td>Koehler</td>
</tr>
<tr>
<td>ENY 4660L/6665L</td>
<td>Med-Vet Entomology / Adv Med-Vet Entomology Lab</td>
<td>30</td>
<td>Kaufman</td>
</tr>
<tr>
<td>ENY 4905</td>
<td>Introduction to Beekeeping</td>
<td>4</td>
<td>Kern</td>
</tr>
<tr>
<td>ENY 5236</td>
<td>Insect, Pest and Vector Management</td>
<td>2</td>
<td>Capinera</td>
</tr>
<tr>
<td>ENY 5820</td>
<td>Insect Molecular Genetics - Web</td>
<td>2</td>
<td>Hoy</td>
</tr>
<tr>
<td>ENY 5820</td>
<td>Insect Molecular Genetics</td>
<td>9</td>
<td>Hoy</td>
</tr>
<tr>
<td>ENY 6203</td>
<td>Insect Ecology</td>
<td>12</td>
<td>McAuslane</td>
</tr>
<tr>
<td>ENY 6203</td>
<td>Insect Ecology - Web</td>
<td>7</td>
<td>McAuslane</td>
</tr>
<tr>
<td>ENY 6203L</td>
<td>Insect Ecology Lab</td>
<td>12</td>
<td>McAuslane</td>
</tr>
<tr>
<td>ENY 6203L</td>
<td>Insect Ecology Lab - Web</td>
<td>7</td>
<td>McAuslane</td>
</tr>
<tr>
<td>ENY 6651C</td>
<td>Insect Toxicology</td>
<td>2</td>
<td>Yu</td>
</tr>
<tr>
<td>ENY 6665</td>
<td>Adv Med-Vet Entomology 1</td>
<td>7</td>
<td>Kern</td>
</tr>
<tr>
<td>ENY 6665L</td>
<td>Adv Med-Vet Entomology 1 Lab</td>
<td>7</td>
<td>Kern</td>
</tr>
<tr>
<td>ENY 6905</td>
<td>Insect Physiology</td>
<td>1</td>
<td>Nation</td>
</tr>
<tr>
<td>ENY 6942</td>
<td>Insect Diagnostics</td>
<td>7</td>
<td>L. Buss</td>
</tr>
<tr>
<td>NEM 5707C</td>
<td>Plant Nematology</td>
<td>4</td>
<td>Dickson</td>
</tr>
<tr>
<td>PLP 3002/5005</td>
<td>Fundamentals of Plant Pathology</td>
<td>47</td>
<td>Crow</td>
</tr>
</tbody>
</table>